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I. Introduction

1. Motivation and Background

The hemispheric asymmetry of the atmospheric general circulation is introduced by in-
homogeneities of surface properties. Orography and localised heating are two examples
for such inhomogeneities. In order to disentangle the observed combined effect of all of
the earth’s inhomogeneities, it is crucial to understand how the effect of a single idealised
inhomogeneity affects the global circulation (Held , 2005). This understanding also per-
mits predictions of how the circulation on the northern hemisphere will react, e.g. to a
reduction of Arctic sea–ice cover (Stroeve et al., 2007; Serreze et al., 2007). The observed
and projected loss of sea–ice due to climate change constitutes a new large–scale source
of heat which presumably impacts the large–scale circulation.

The effects of orography, that is usually idealised as an isolated Gaussian mountain, have
been examined by dynamical meteorologists for the last decades. A linearised version of
this system has received special attention, as it is easy enough to be solved analytically but
still is in reasonable agreement with observations (Smith, 1980; Hoskins and Karoly , 1981).
In physical terms, by linearising the system one assumes that the approaching air masses
flow over the mountain without deviation from the background flow. The limitations of
the linear model and the transition from linear towards non–linear regimes was subject
to several studies (Cook and Held , 1992; Ting and Yu, 1998; Wang and Kushner , 2010).
Although they argue for a more gradual transition between the linear and the non–linear
regimes Ringler and Cook (1997) maintain the concept of a critical mountain height that
separates the two regimes. Additionally Ringler and Cook (1997) examine the dependence
of the critical height on pertinent meteorological parameters. Focusing more on the non–
linear impacts, Valdes and Hoskins (1991) found, that the inclusion of non–linear terms
in the lower boundary conditions can significantly alter the results.

The non–linearity enters the model system via the advection term. It allows the eddies to
influence themselves by their respective wind field deviations. This self–advection gives
rise to phenomena like a deviation of the streamlines around the mountain, total blocking
of some air masses or the emergence of a secondary circulation around the mountain. It
was suggested, that the Himalayas also act as a divide between air masses of very different
properties (Boos and Kuang , 2010). This would also be a non–linear effect that is very
closely related to orographic blocking.

All studies referred to above focus on the steady–state response of the atmospheric cir-
culation. However, the transient circulation will also adapt to a newly included surface
inhomogeneity, changing for example the location and intensity of storm tracks. The
location of these tracks will in turn drastically influence the local climates in the mid–
latitudes through the prevailing wind and precipitation patterns. Much less work has been
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conducted on this topic, and for example the mid–winter depression of the intensity of the
Pacific storm track still remains to be explained (Chang et al., 2002). Recent studies on
this topic investigate the influence of the jet stream’s structure (Son et al., 2009) and the
influence of different mountain ranges and plateaus in the vicinity of the Himalayas (Park
et al., 2010).

This result of the topographic blocking on both the mean and the transient circulation
has not been accounted for in any study the applicant is aware of. It is the main reason
behind the development of Bedymo. In particular the main open questions that were
kept in mind when drafting the model’s basic concepts that are laid out in the following
section are:

1. What criterion (if any) separates the linear from the non–linear response to an
isolated surface feature or inhomogeneity?

2. How important is topographic blocking compared to other non-linear effects? Can
the role of mountains as air–mass divides be accounted for in linear theories?

3. How can changes in the transient circulation due to named inhomogeneity be de-
scribed? How does the transient circulation influence the mean circulation in these
cases?

4. What are the governing processes causing the mid–winter depression of the intensity
of the Pacific storm track?

2. Basic concepts

• Solution of the governing equations in grid–point space to allow for explicit blocking.

• Model of the free atmosphere: Lower boundary is set to the top of the planetary
boundary layer.

• Two conceptual parts:

– Lower part: Maximum one model layer, where explicit blocking is allowed

– Upper part: One or more model layers in terrain–following coordinates

• Configurable set of simplifications around quasi–geostrophy

• Application in the mid- and high latitudes



II. Model physics

3. Fundamental equations

Starting with the primitive equations

∂u

∂t
+ u · ∇u = −2Ω× u− 1

ρ
∇p+ g + Fr (3.1)

∂ρ

∂t
+∇(ρu) = 0 (3.2)

cv

(
∂

∂t
+ u · ∇

)
T + p

(
∂

∂t
+ u · ∇

)
α = J (3.3)

the so-called metric terms appear when changing to a local Cartesian coordinate system
on a sphere. Using the transformation

du

dt
= i

du

dt
+ j

dv

dt
+ k

dw

dt
+ u

di

dt
+ v

dj

dt
+ w

dk

dt
(3.4)

along with the following expressions for the total derivatives of the unit vectors i, j and
k

u
di

dt
= u · u ∂i

∂x
=

u2

a cosϕ

di

dλ
=

u2

a cosϕ
(j sinϕ+ k cosϕ) (3.5)

v
dj

dt
= v

(
u
∂j

∂x
+ v

∂j

∂y

)
=

uv

a cosϕ

∂j

∂λ
+
v2

a

∂j

∂ϕ
=

uv

a cosϕ
(i sinϕ) +

v2

a
k (3.6)

w
dk

dt
= w

(
u
∂k

∂x
+ v

∂k

∂y

)
=

uw

a cosϕ

∂k

∂λ
+
vw

a

∂k

∂ϕ
=

uw

a cosϕ
(i cosϕ) +

vw

a
j (3.7)

yields the equations of motion:

∂u

∂t
+ u · ∇u+

uv

a
tanϕ+

uw

a
= fv − f ′w − 1

ρ

∂p

∂x
+ Frx (3.8)

∂v

∂t
+ u · ∇v +

u2

a
tanϕ+

vw

a
= −fu− 1

ρ

∂p

∂y
+ Fry (3.9)

∂w

∂t
+ u · ∇w +

u2 + v2

a
= f ′w − 1

ρ

∂p

∂z
+ Frz − g (3.10)
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3.1. Momentum equations in z and p-coordinates

Scale analysis of the vertical momentum equation for synoptic scale flow in the mid-
latitudes leads to the well–known hydrostatic approximation. In the horizontal, only
terms that are O(Ro) or larger have been kept. The scale analysis showst that for the
geometry of the earth, the metric terms are generally negligible.

∂v

∂t
+ u · ∇v + fk × v = −1

ρ
∇p +D∇2v (3.11)

∂p

∂z
= −ρg (3.12)

Exploiting the hydrostatic approximation allows the derivation of some relations

φ = gz (3.13)

∂

∂x

∣∣∣
p

=
∂

∂x

∣∣∣
z

+
∂z

∂x

∣∣∣
p

∂

∂z
(3.14)

−→ 0 =
∂p

∂x

∣∣∣
z

+
∂z

∂x

∣∣∣
p

∂p

∂z
=

1

g

∂φ

∂x

∣∣∣
p
(−ρg) (3.15)

−→ −1

ρ
∇zp = −∇pφ (3.16)

that allow the transformation of the vertical coordinate from z to p. Using those relations,
the momentum equations in p-coordinates results to

∂v

∂t
+ u · ∇v + fk × v = ∇pφ +D∇2

pv (3.17)

∂φ

∂p
= −RT

p
(3.18)

A similar form of the momentum equations can be derived also in z coordinates, using the
Boussinesq approximation. In this approximation the density field is partitioned into a
stationary basic state ρ0 and a pertubation ρ′. Both the corresponding basic state pressure
p0 and the pressure pertubations p′ are assumed to be in hydrostatic balance.

ρ = ρ0(z) + ρ′(x, y, z, t) (3.19)

p = p0(z) + p′(x, y, z, t) (3.20)

The geopotential pertubation corresponding to p′ can be defined as φ′ = 1
ρ0
p′. With these

relations

1

ρ
∇zp ≈

1

ρ0
∇zp′ = ∇zφ′ , (3.21)

−→ ∂φ′

∂z
=

1

ρ0

∂p′

∂z
− p′

ρ20

∂ρ0
∂z
≈ g ρ

′

ρ0
= b′ . (3.22)

The b′ is an expression of the buoyancy pertubation. The approximated momentum equa-

Why neglect
the second
term?
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tions in z coordinates hence read

∂v

∂t
+ u · ∇zv + fk × v = ∇zφ′ +D∇2

zv , (3.23)

∂φ′

∂z
= b′ . (3.24)

(3.25)

3.2. Continuity equation

In pressure coordinates the continuity equations is just

∇ · u = ∇p · v +
∂ω

∂p
= 0 . (3.26)

Following again the Boussinesq approxmation in z-coordinates simplifies the continuity by
replacing density by the basic state density ρ0 = ρ0(z).

∇ · u+
w

ρ0

∂ρ0
∂z

= ∇z · v +
1

ρ0

∂

∂z
(ρ0w) = 0 (3.27)

3.3. Thermodynamic equation

The conversion of the thermodynamic equation needs a little more work:

cp
dT

dt
− αdp

dt
= J (3.28)(

∂

∂t
+ v · ∇h

)
T +

(
∂T

∂p
− RT

cpp

)
ω =

J

cp
(3.29)(

∂

∂t
+ v · ∇h

)
T +

∂θ

∂p

T

θ
ω =

J

cp
with θ ≡ T

(
p0
p

)R/cp
(3.30)(

∂

∂t
+ v · ∇h

)
T −N2RT

2

pg2
ω =

J

cp
with N2 ≡ g

θ

∂θ

∂z
(3.31)

−
(
∂

∂t
+ v · ∇h

)
∂φ

∂p
− N2

g2

(
∂φ

∂p

)2

ω =
RJ

cpp
with T = − p

R

∂φ

∂p
(3.32)

The derivation in z-coordinates works much along the same lines. The main difference is
that pressure and Temperature are deviations from a basic state:

cp
dT ′

dt
− α0

dp′

dt
= J (3.33)(

∂

∂t
+ v · ∇h

)
T ′ +

(
∂T ′

∂z
− g

cp

)
w =

J

cp
with ω ≈ −ρ0gw (3.34)(

∂

∂t
+ v · ∇h

)
T ′ −N2 θ0

g
ω =

J

cp
(3.35)(

∂

∂t
+ v · ∇h

)
∂φ′

∂z
−N2ω =

gJ

cpθ0
with b′ = g

ρ′

ρ0
≈ gT

′

θ0
(3.36)
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3.4. Vorticity equation

Cross–differentiating the momentum equations along the definition of the vorticity ζ =
∂v/∂x− ∂u/∂y

∂

∂x

(
dv

dt

)
− ∂

∂y

(
du

dt

)
=
∂ζ

∂t
+ u · ∇ζ

+

(
∂u

∂x

∂v

∂x
− ∂u

∂x

∂u

∂y

)
+

(
∂v

∂x

∂v

∂y
− ∂v

∂y

∂u

∂y

)
+

(
∂η̇

∂x

∂v

∂η
− ∂η̇

∂y

∂u

∂η

)
+ βv + f

∂η̇

∂η
+D(η)∇2

ηζ = 0

(3.37)

yields a prognostic equation for the vorticity in both the p− and z−system. Since the
resulting equations in p− and z−coordinates only differ by a constant, the following equa-
tions are written with a generalised vertical coordinate η which can be interpreted as both
p or z. Vertical velocity is denoted η̇. In the following, the constants differing between the
coordinate systems are denoted as a function of η, here only D(η).

Using vector notation and neglecting vertical advection, this formula can be shortened
to

∂ζ

∂t
+ v · ∇hζ + (f + ζ)

∂η̇

∂η
+ k ·

(
∂v

∂η
×∇hη̇

)
+ βv +D(η)∇2

ηζ = 0 . (3.38)

The numerical precision can be improved by casting this equation from its advective into
its flux-divergence form.

∂ζ

∂t
+∇h · (vζ) + f

∂η̇

∂η
+ k ·

(
∂v

∂η
×∇hη̇

)
+ βv +D(η)∇2

ηζ = 0 . (3.39)

4. A hierarchy of simplifications for the free atmosphere

The above equations may be written in terms of the stream function ψ and the velocity
potential χ (keeping only the vertical velocity ω) by using the relations

u ≡ ∂χ

∂x
− ∂ψ

∂y
, (4.1)

v ≡ ∂χ

∂y
+
∂ψ

∂x
, (4.2)

ζ = ∇2
hψ and (4.3)

∂φ

∂η
= f0

∂ψ

∂η
for η ∈ {p, z} . (4.4)

The same generalised notation using η and η̇ for the vertical coordinate is used as in the
derivation of the vorticity tendency.
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The vorticity equation, the thermodynamic equation and continuity then read(
r +

∂

∂t

)
∇2ψ +∇η(v∇2

ηψ) + f0D + k ·
(
∂v

∂η
×∇η̇

)
+ βv +D(η)∇4ψ = 0 (4.5)(

r +
∂

∂t
+ v · ∇η

)
∂ψ

∂η
+N2C(η)η̇ = Q(η) (4.6)

−∂η̇
∂η

= ∇2χ = D (4.7)

The only difference between the coordinate systems is in C, D and Q:

What about
∂ps
∂t ? Why

zero? Prog-
nostic equa-
tion?

C(η = p) =
f0
g2

(
∂ψ

∂p

)2

, Q(η = p) = − RJ

f0cpp
(4.8)

C(η = z) = − 1

f0
, Q(η = z) =

gJ

f0cpθ0
(4.9)

This system is the semi–geostrophic (SG) system. In comparison to the standard QG–
system, the full advection terms have been kept, resulting in the vorticity equation con-
taining a tilting term and the absolute vorticity f0 + ∇2ψ instead of only the planetary
vorticity f0 in the streching term.

The simplified standard quasi–geostrophic equation system is obtained by omitting ageo-
strophic advection. As a consequence χ = 0 and everything can be expressed in terms of
the stream function.(

r +
∂

∂t

)
∇2
ηψ +∇η(vg∇2

ηψ) + fD + β
∂ψ

∂x
+D(η)∇4

ηψ = 0 (4.10)(
r +

∂

∂t

)
∂ψ

∂η
+∇η(vg

∂ψ

∂η
) +N2C(η)η̇ = Q(η) (4.11)

χ = 0, −∂η̇
∂η

= D (4.12)

To linearise the system, only the deviations from a stationary basic state Ψ0 and the
corresponding basic state winds vg0 are considered:(

r +
∂

∂t

)
∇2
ηψ +∇η(vg0∇2

ηψ) + fD + β
∂ψ

∂x
+D(η)∇4

ηψ = 0 (4.13)(
r +

∂

∂t

)
∂ψ

∂η
+∇η(vg0

∂ψ

∂η
) +N2C(η)η̇ = Q(η) (4.14)

χ = 0, −∂ω
∂p

= D (4.15)

5. Modifications in the blocking layer

Not determined yet.

What are
the modifi-
cations?
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III. Model numerics

6. Grid organisation

The vertical grid is organised as a generalised version of the 2–layer model used to study
baroclinic instability. In this setup the vertical velocity components η̇ are evaluated in
between the standard model levels, yielding the staggered grid in figure 6.1. Additionally,
the vertical velocities at the bottom and at the top of the model domain are set by
boundary conditions (sec. 11). The vertical grid indexing starts at the top with the
number 1. η̇–levels bear the same index as the standard model level below.

The vertical grid does not depend on the orography and potentially cuts through the land
surface. The problems arising from this cut are discussed physically in section 5.

In the horizontal, a rectangular Cartesian Arakawa-C grid is employed. Analogous to the
vertical dimension, the locations where each horizontal velocity component is defined are
moved by ∆x/2 against coordinate direction relative to the scalar grid point.

The grid point indexes for all scalars run from 1 to nx (or ny, respectively). The necessary
number of boundary values depends on the model configuration. For the standard advec-
tion scheme three values are needed. Their indexes are added outside the model domain
(e.g. indexes -2 until 0 and nx+1 (ny+1) until nx+3 (ny+3)). wip

In contrast to many other non–global meteorological models, the model domain does not
need to be rectangular. The model boundary may be set (almost) freely along grid cell
boundaries. The only limitation is that every exclusion from the model domain must
be at least two grid cells ”thick”. This limitation is necessary to avoid that a grid cell
outside the model domain is connected to the model domain via two opposing boundaries.
In this case it would be impossible to set correct boundary conditions for the opposing
boundaries.
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Top of the atmosphere p = 0
η̇k=1

ψk=1 p = ps 0.5/nv

p = ps 1/nv
η̇k=2

ψk=2 p = ps 1.5/nv

ψk=nv−1p = ps (nv− 1.5)/nv

p = ps (nv− 1)/nv
η̇k=nv

ψk=nv
p = ps (nv− 0.5)/nv

p = ps η̇k=nv+1

Earth surface

z

p

Figure 6.1.: Vertical grid staggering and indexing. nv denotes the number of vertical levels.
The pressure levels are equally spaced between the standard pressure ps and
the Top of the Atmosphere, as indicated by the formulae. The calculation of
the height-levels works analogously, with z increasing from zero to the height
of the rigid lid at ztop.

7. Time integration scheme

There are several time integration schemes implemented in Bedymo. All of them can be
formulated as a series of the basic explicit Euler steps. Hence, they perform one or more
of these basic integration steps for advancing one model time step. The available schemes
are:

ID= 1 4th-order Runge-Kutta

ID= 2 Miller-Pearce

ID= 3 Purely quasi-implicit

ID= 4 Leap-frog with RAW filter (recommended)

ID= 5 Purely explicit Euler

These schemes are all implemented by one generic Eulerian–integration method, which
uses the three time levels setup by the different schemes. These time levels are (1) the old
state of the prognostic variable to used in the time discretisation (2) the intermediate state
of all variables ti used everywhere but in the time discretisation and (3) the new state of
the prognostic variable tn that is now being calculated. As visible from table 7.1, the old
and intermediate time level is always identical for the purely explicit scheme (accordingly
for a implicit scheme the intermediate level would always be equal to the new time level).
The recommended Miller–Pearce scheme increases accuracy by integrating quasi–implicitly
every second time step. In these cases a new intermediate state is calculated by a normal
explicit time step. Subsequently this result is used to recalculate the same time step
approximately implicit.
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The Leap frog is stabilised by the Robert-Asselin filter modified as suggested by Williams
(2010). The filter is applied to the vorticity, to the stream function and to all tracers.

Table 7.1.: Indices to, ti and tn for a) explicit, b) the Miller–Pearce, c) the Leap Frog and
d) 4th-order Runge Kutta time integration scheme. Letters denote a temporary
storage for a sub–time step.

a) Time step # to ti tn

1 0 0 1
2 1 1 2
3 2 2 3
4 3 3 4
5 4 4 5
6 5 5 6
7 6 6 7
8 7 7 8
9 8 8 9

b) Time step # to ti tn

1 0 0 1
1 1 x

2 1 x 2
3 2 2 3

3 3 x
4 3 x 4
5 4 4 5

5 5 x
6 5 x 6

c) Time step # to ti tn

1 0 0 1
2 0 1 2
3 1 2 3
4 2 3 4
5 3 4 5
6 4 5 6
7 5 6 7
8 6 7 8
9 7 8 9

d) Time step # to ti tn

0 0 x
0 x y
0 y z

1 0 x-z 1
1 1 x
1 x y
1 y z

2 1 x-z 2
2 2 x

8. Advection scheme

In bedymo the 1st-order to 6th-order upstream advection schemes are implemented. With
increasing order, the numerical diffusion and phase errors are reduced. All schemes can
be expressed by the generic expression

∂

∂x
(uχ) ≈ 1

∆x

(
max(u, 0)χ+

∣∣
i+0.5

+min(u, 0)χ−
∣∣
i+0.5
−max(u, 0)χ+

∣∣
i−0.5−min(u, 0)χ−

∣∣
i−0.5

)
.

(8.1)
The discretised version of the derivatives χ+ and χ− depends on the order of the scheme.
The separation between positive and negative wind speeds which reflects the upwind-
bias, is only effective for odd-numbered schemes. For even-numbered schemes χ+ = χ−.
Equivalent expressions as presented here for the x-direction also hold for advection in
y-direction. The ID of the respective scheme is equivalent to the order of the scheme.

The odd-numbered schemes are summarised in table 8.1.
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In multi–dimensional advection, the Taylor expansion on which the derivation of these
schemes is based would contain many cross derivatives along several dimensions. As
the amount of data points used in the computational stencil would increase with the
order of the scheme to the power of the flow dimension, this technique is soon getting
unfeasibly complex to compute and derive. An elegant way to circumvent this problem in
multi–dimensional advection is using the time–splitting technique (Smolarkiewicz , 1982;
Tremback et al., 1987). Following this technique, the one–dimensional advection is applied
separately for every dimension.

The derivation of the schemes is given in the appendices A and B.

Table 8.1.: Overview over the first four upwind–biased spatial discretisation schemes

Order χ+
∣∣
i+0.5

χ−
∣∣
i+0.5

1st χi χi+1

2nd
χi + χi+1

2

χi + χi+1

2

3rd
2χi+1 + 5χi − χi−1

6

−χi+2 + 5χi+1 + 2χi
6

4th
−1χi+2 + 7χi+1 + 7χi − χi−1

12

−1χi+2 + 7χi+1 + 7χi − χi−1
12



Bedymo Documentation 13

9. Laplace–inversion scheme

To retrieve the stream function from a given vorticity field, the equation ∇2ψ = ζ must be
solved for ψ. The Laplacian must accordingly be inverted to allow this. There are several
algorithms proposed that accomplish this for different sets of assumptions. For bedymo
the stabilised version of the Bi-Conjugate Gradient (Bi-CGstab) method (van der Vorst ,
1992; Munksgaard , 1980) has proven to yield good and fast results.

To accelerate the convergence process further, a preconditioning technique may be applied.
In mathematical terms, the all preconditioning methods aim to level out the magnitudes
of the eigenvalues of the matrix that is being inverted. With all eigenvalues exactly equal,
the convergence would be exact after only one iteration. In Bedymo the only ILU(0)-
preconditioning is implemented and used.
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1: x0 ← 0
2: r ← b−Ax0
3: r0 ← r
4: ρo ← α← ω0 ← 1
5: v0 ← p0 ← 0
6: for i← 1, 2, 3, . . . do
7: ρn ←< r0, r >
8: if ρn < ρmax then
9: return

10: end if
11: β ← α

ω
ρn
ρo

12: p← r + β(p− ωv)
13: v ← Ap
14: α← ρn

<r0,v>
15: s← r − αv
16: t← As
17: ω ← <t,s>

<t,t>
18: x← x+ αp+ ωs
19: r ← s− ωt
20: ρo ← ρn
21: end for

Figure 9.1.: The unpreconditioned Bi-CGstab algorithm as implemented in bedymo.

10. Lateral boundary conditions

There are currently four boundary types implemented in bedymo. They can be set in-
dependently for the eastern/western boundaries and the southern/northern boundaries.
Their respective mathematical formulation is summarised in table 10.1. In physical terms
they might be characterised as follows:

ID= −1 Allows eddies and waves to propagate through the boundary, reentering the
model domain on the opposite side. Is most useful to represent shape of a cir-
cumglobal latitude band as a model domain.

ID= 0 As the stream function is set to zero within the complete boundary, both the
boundary–parallel and the boundary–normal wind component vanish. However,
there might be a strong gradient of the stream function near the boundary, resulting
in strong boundary-parallel winds close to the boundary. This condition represents
a wall with a ”no-slip”-condition placed directly at the first boundary grid point.

ID= 1 While the gradient of the stream function normal to the boundary still vanishes
with this condition, the boundary–parallel gradient is constant. Consequently, the
boundary–parallel are implicitly set to zero, while the boundary–normal winds stay
constant. This allows eddies and waves to propagate outside the model domain.
Waves might however also (at least partially) be reflected on the boundary.
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ID= 2 The constant gradient condition for the stream function yields a constant wind at
the boundary.

How do
waves be-
have with
this condi-
tion? Expla-
nation?

As not all combinations of boundary types yield physically meaningful results, the follow-
ing list gives a short explanation to a few recommended configurations:

All boundaries= −1 Double–periodic domain for idealised model setups.

All boundaries= 0 A closed box setup for idealised model studies.

East–West= −1 / North–South= 1 Resembles a periodic latitude channel, where waves
may propagate freely through the northern and southern boundaries.

The temperature ∂ψ
∂η and vertical wind velocity η̇ is calculated directly from the stream

function and vorticity fields. For this reason, no explicit boundary condition is needed for
these variables.

Table 10.1.: Implemented boundary conditions and their ID

ID Condition for ζ Condition for ψ Condition for ∂ψ
∂T

−1 by ψ (periodic) periodic by ψ (periodic)
0 by ψ (zero) zero by ψ (zero)
1 by ψ constant by ψ
2 by ψ constant gradient by ψ
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11. Lower and upper boundary conditions

The upper boundary is considered a rigid lid, such that η̇k=1 = 0. At the lower boundary,
the wind follows the orography, which can be expressed as

η̇k=nv+1 =
1

2

(
ui+0.5 + ui−0.5)

∂ηs
∂x

+
1

2

(
vj+0.5 + vj−0.5)

∂ηs
∂y

(11.1)

The slopes of the orography ηs is determined with high accuracy during the initialisation
of the model.

For the vorticity ζ and the stream function ψ no explicit boundary conditions are required.

Settle modi-
fications for
the block-
ing layer
and adapt as
necessary.

12. Integration sequence

1. Calculate all terms contributing to the vorticity tendency and integrate the vorticity
to the new time level

2. Set boundary conditions for the vorticity

3. Infer the new stream function from the new vorticity by inverting the Laplacian

4. Diagnostically calculate new vertical wind

5. Diagnose the divergence ∂η̇/∂η, and in Semi-Geostrophy infer the velocity potential

6. Diagnostically calculate new horizontal winds

13. Discretised equations

Following the integration sequence presented above, all bits and pieces laid out in the
previous sections of this chapter will be combined with the model equations to construct
the discretised equations as they are solved in bedymo. The calculations for a time step
begin with the prediction of the new vorticity field.

13.1. Prognosticating vorticity

The solution technique is explained here for the most complex version of the vorticity
equation (4.5), the one derived in the semi-geostrophic framework. For convenience it is
repeated here:(

r +
∂

∂t

)
∇2ψ +∇η(v∇2

ηψ) + f0D + k ·
(
∂v

∂η
×∇η̇

)
+ βv +D(η)∇4ψ = 0

The terms of this equations are in order of appearance (1) Ekman friction Eζ , (2) the
local vorticity tendency, (3) vorticity flux divergence Aζ , (4) the streching term S, (5) the
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tilting term T , (6) the β–effect B and (7) a damping term D. Using these symbols, the
local vorticity tendency may be expressed as:

∂ζ

∂t
= −(Aζ + S + T +B + E +D) (13.1)

This equation can easily be discretised for all Euler–like schemes as:

ζtn = ζto −∆t (Aζ +R+ T +B + E +D)|ti (13.2)

For a description of the time levels tn, ti and to as well as the discretisation for other time
integration schemes see chapter 7.

The individual terms contributing to the vorticity tendency are given in their discretised
version by:

Aζ |ti =
1

mx∆x

(
max(u, 0)ζ+

∣∣
i+0.5

+ min(u, 0)ζ−
∣∣
i+0.5

−max(u, 0)ζ+
∣∣
i−0.5 −min(u, 0)ζ−

∣∣
i−0.5

)
+

1

my∆y

(
max(v, 0)ζ+

∣∣
j+0.5

+ min(v, 0)ζ−
∣∣
j+0.5

−max(v, 0)ζ+
∣∣
j−0.5 −min(v, 0)ζ−

∣∣
j−0.5

)
(13.3)

R|ti =

{
(f + ζti)Dti if ladv ageo

fDti if ¬ladv ageo
(13.4)

T |ti =
∆kui+0.5

ti
+ ∆kui−0.5ti

2∆η

η̇j+1
ti

+ η̇j+1,k+1
ti

− η̇j−1ti
− η̇j−1,k+1

ti

2my∆y

−
∆kvj+0.5

ti
+ ∆kvj−0.5ti

2∆η

η̇i+1
ti

+ η̇i+1,k+1
ti

− η̇i−1ti
− η̇i−1,k+1

ti

2mx∆x
(13.5)

B|ti = βvti (13.6)

Eζ |ti = rζti (13.7)

D|ti = Dσ∇2ζti (13.8)

The horizontal wind components u and v, the vertical wind ω and the divergence D are
diagnosed as detailed in the following sections. The Laplace operator ∇2 will be defined in
the following section, the upwind biased expressions for the advected gradients are listed
in table 8.1. The operators ∆kut and ∆kvt express a standard centered difference as far
an upper and a lower layer are present. Otherwise the discretisation is biased towards the
model domain:

(
∆kut,∆

kvt
)

=


(
uk+1
t − ukt , vk+1 − vkt

)
if ∃k + 1 and @k − 1(

ukt − uk−1t , vk − vk−1t

)
if @k + 1 and ∃k − 1

1
2

(
uk+1
t − uk−1t , vk+1 − vk−1t

)
if ∃k + 1 and ∃k − 1

(13.9)

The terms in (13.2) can individually be (de–)activated in the configuration namelist. The
control variables are called (in order of the appearance of the terms): ladv, lrotation,

lrotation
does not ex-
ist yet

ltilting, lcoriolis, lfriction and ldamp.
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13.2. Diagnosing stream function

Once the new vorticity field is calculated, the stream function needs to be established to
allow diagnosing all remaining variables. While the inverse operation can be formulated
easily by the usual discretisation of the Laplacian

ζti = ∇2ψti ≈
ψi+1
ti
− 2ψti + ψi−1ti

m2
x∆x2

+
ψj+1
ti
− 2ψti + ψj−1ti

m2
y∆y

2
, (13.10)

it is not straightforward to calculate ψ from ζ. As the Laplacian is a linear operator, the
equation can be written in terms of a matrix multiplication as ζti = Lψti . Each row of
the matrix L contains the information, how the vorticity in the corresponding grid cell
depends on the stream function in all other grid cells. As one can see from 13.10, the
vorticity depends one the stream function of the grid cell itself, plus the four directly
neighbouring grid cells. This fact makes the matrix L sparse (the vast majority of the grid
cells do not contribute to a specific vorticity value) and diagonally–dominant (the grid cell
depends mostly on itself).

Matrixes with these properties can be inverted by several algorithms (section 9), allowing
to calculate the stream function by ψti = L−1ζti . It is however important to note that
these algorithms do not require either L or L−1 to be stored in memory in their entirety.
This fact eases the memory requirement of the algorithms drastically for larger model
domains by avoiding the storage of myriads of zeros.

13.3. Diagnosing temperature

The measure Tψ = ∂ψ
∂η is called “temperature” within the model. It is defined in the

same places as the vertical velocity. As derived for both coordinate systems in section
3.3, the relation to the real temperature can be established via the relation between the
(geostrophic) stream function and the (geostrophic) geopotential and the thermal wind
balance. Combining these equation yields

∂ψ

∂p
= −RT

f0p
in p-coordinates and

∂ψ′

∂z
= −gT

′

θ0
in z-coordinates.

Thus, in both coordinate systems, the variations of ∂ψ
∂η are entirely due to variations in

temperature.

Due to the vertical staggering of the grid (section 6, figure 6.1), the following discretisation
is also a centered difference:

Tψ =
∂ψ

∂η

∣∣∣
ti
≈
ψkti − ψ

k−1
ti

∆η
. (13.11)
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13.4. Diagnosing vertical winds

The vertical velocity component is diagnosed using the thermodynamic equation, here
repeated in the most complex semi-geostrophic version (4.6).(

r +
∂

∂t
+ v · ∇η

)
∂ψ

∂η
+N2C(η)η̇ = Q(η)

Solving this equation for η̇ yields

η̇ = − 1

N2C(η)

((
r +

∂

∂t
+ v · ∇

)
∂ψ

∂η
−Q(η)

)
= − 1

N2
(L+AT + ET + F ) . (13.12)

The three contributing terms are, in order, (1) Ekman friction ET , (2) the local tem-
perature tendency L, (3) temperature advection AT and (4) diabatic forcing F . In their
discretised version, they are given by:

L|ti =
(ψkti − ψ

k
to)− (ψk−1ti

− ψk−1to )

∆t∆p
(13.13)

AT |ti =
1

mx∆x

(
max(u, 0)T+

∣∣
i+0.5

+ min(u, 0)T−
∣∣
i+0.5

−max(u, 0)T+
∣∣
i−0.5 −min(u, 0)T−

∣∣
i−0.5

)
+

1

my∆y

(
max(v, 0)T+

∣∣
j+0.5

+ min(v, 0)T−
∣∣
j+0.5

−max(v, 0)T+
∣∣
j−0.5 −min(v, 0)T−

∣∣
j−0.5

)
(13.14)

ET |ti = rTti (13.15)

F |ti = − g

θ0
Qti (13.16)

Again, the advection terms can be disabled by setting ladv to false. The diabatic heating
Q may be formulated freely in the model source code and activated by setting lforce.

13.5. Diagnosing divergence and velocity potential

The last diagnostic that is needed in the vorticity equation is the divergence D. It can be
determined by the continuity equation

∂ua
∂x

+
∂va
∂y

+
∂η̇

∂η
= 0 .

From the definition

D ≡ ∂ua
∂x

+
∂va
∂y

follows

D =
∂η̇

∂η
. (13.17)

This equation may be discretised as following centered difference:

Dti =
η̇k+1
ti
− η̇kti

∆η
(13.18)

The velocity potential is calculated from the divergence in the same way as the stream
function is calculated from vorticity, in this case by χti = L−1Dti .
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13.6. Diagnosing horizontal winds

By the definition of the stream function and the velocity potential

u =
∂χ

∂x
− ∂ψ

∂y
and v =

∂χ

∂y
+
∂ψ

∂x
. (13.19)

Using centered differences these equations read in discretised form

uti ≈
χi+0.5
ti

− χi−0.5ti

mx∆x
−
ψj+0.5
ti

− ψj−0.5ti

my∆y
and vti ≈

χi+0.5
ti

− χi−0.5ti

my∆y
+
ψj+0.5
ti

− ψj−0.5ti

mx∆x
.

(13.20)
The centered differences can be applied everywhere within the model domain, as the stream
function is defined on at least one row of boundary values outside the actual domain.

With this equation the model is closed and can be integrated.



IV. Model application

14. Installation and Update

Please report errors during the installation procedure to csp001@uib.no. The model was
tested on a Linux machine maintained by the IT department of the University of Bergen.
The necessary libraries are installed on gfi-storm, skd-cyclone and the computers in
the G-Lab.

14.1. Prerequisites

• A Fortran 2003 compiler, e.g. gfortran-4.5 or newer.

• The netCDF library, version 4.0 or newer.

• NumPy & f2py for the python bindings and the python runscript

• SciPy, matplotlib & PyQt for BedymoGUI

14.2. Installation procedure

The below commands assume that you are within the UiB network.

1. Get the code from the public git–repository.

$ git clone /Data/gfi/users/tsp065/lib/bedymo.git

This creates a new directory called bedymo in the current directory. Use

$ cd bedymo

to get there.

2. Choose the branch of the model that you want to use. To check which branches are
available use

$ git branch

The currently active branch is indicated by an asterisk. If unsure which branch to
choose, take zflux. Switch to this branch by

$ git checkout zflux

3. Run the compile script in the bedymo directory.



22 14. Installation and Update

$ ./compile

If your host is not known to the compile script it will issue a warning, but tries to
compile Bedymo assuming that the NetCDF library is within the default library
search path.

4. Start a short model run, using the default configuration provided via bedymo std.nml

to test the compilation result.

$ ./bedymo.x

You might also use the shared object bedymo.so, to run the model via the python
runscript or BedymoGUI.

14.3. Update and development procedures

To update the source code, use the command

$ git pull

from within the bedymo directory. This command fetches all the updates from the git-
repository that you cloned. If you followed the above installation procedure this is
/Data/gfi/users/tsp065/lib/bedymo.git.

The command will fail with a message about uncommitted changes if any of the files
in the repository have been edited. That includes the standard model configuration file
bedymo std.nml. In case only this configuration file is changed, you can restore the
standard model configuration by executing

$ git checkout bedymo std.nml

Note: Local changes to the file are being overriden by this command without further
checks!

If you edited the model source code and want to keep the changes commit your changes
by

$ git commit -a

and provide a meaningful but brief description of your changes. Once your changes are
committed, you can retry the git pull. This time it will try to merge your version
with the updated version from the public repository. If git is not able to merge the file
automatically, it will insert marks into the file to point out the conflicts. When resolved,
commit the merged version with git commit -a.
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15. Configuration namelist

15.1. Numerics

The constants defined in the Numerics section define many aspects of how exactly the
governing equations are to be solved. The most relevant part of this section is likely the
grid configuration. In the standard configuration this section looks like:

&numerics

nx = 180,

ny = 180,

np = 3,

nt = 5,

dx = 120000.,

dy = 120000.,

dt = 1800,

ldt_dyn = F,

latbdrtyp_ew = -1,

latbdrtyp_sn = 0,

alpha = 0.1,

adv_order_max = 3,

int_scheme_id = 2,

bdr_damp = 0.2, /

The parameters nx, ny and np define the size of the grid (without boundaries) in grid points
in the x-, y- and vertical dimension and nt is the number of time levels that are stored for
the prognostic variables. Different schemes have different minimum requirements for np in
the range 2–5. Above the minimum requirement will an increase of this number increase
memory consumption without changing the solution.

The parameters dx and dy define the grid spacing in meters, dt the initial time step in
seconds. Be aware that the time step is dynamically determined from a stability criterion
if ldt dyn is set to true.

The parameters latbdrtyp ew and latbdrtyp sn determine the lateral boundaries for the
East–West direction and the South–North direction, respectively. Refer to chapter 10 for
valid values and their meaning.

The parameter alpha is the coupling parameter for the Robert-Asselin time filter that is
used for the Leap Frog time integration scheme. For alpha=0 there is no coupling.

The parameters adv order max and int scheme id determine which advection scheme
and time integration scheme is used. Refer to chapters 8 and 7 for a description of valid
values and their meaning.

The parameter bdr damp controls the damping within the boundaries for condition 10.
Refer to chapter 10 for details.
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15.2. Physics

The physics section determines which variant of the equations outlined in chapter 4 are
solved. Furthermore some few physical constants are to be defined here.

&physics

lforce = F,

ladv = T,

lconst_adv = F,

ladv_ageo = F,

lcoriolis = T,

lconst_coriolis = F,

ltilting = F,

lfriction = F,

ldamp = T,

lgeo_inhomo = F,

fcor = 1.0e-4,

betacor = 1.67e-11,

bruntvf = 1.0e-2,

ug = 10.0,

vg = 0.0,

ekman_coeff = 2.0e-6,

damp_coeff = 1.0e+2, /

The Boolean parameter lforce enable (if set to true) or disable the additional forcing
terms both for vorticity and temperature. ladv, lconst adv, ladv geo determine the
type of the advection term: is it generally enabled, is it linearised, and is the ageostrophic
advection taken into account? lcoriolis and lconst coriolis define if the coriolis
force is enabled, and if deviations from the β-plane are considered. Setting ltilting,

Currently it
is not possi-
ble to have
deviations
from the β-
plane.

lfriction and ldamp enables the tilting term, scale-independent ekman friction and scale-
selective damping ∝ ∇4ψ, respectively. Setting lgeo inhomo allows the specification of
inhomogeneous basic state winds components ug and vg. They are read from the setup
netCDF-file.

The parameters fcor and betacor define the coriolis parameter f , and the change of the
of the coriolis parameter with y,which is usually called β. The units for both values are
s−1.

The parameter bruntvf (called N2 in the equations) represents the square of the Brunt-
Väisälä frequency as a measure of static stability. The unit is s−2.

The parameters ug and vg define the basic state, geostrophically balanced wind compo-
nents in x and y direction. Units: m s−1.

The parameters ekman coeff and damp coeff define the strength of the scale-independent
ekman friction and the scale selective damping. The units for the friction coefficient is s−1

and for the damping coefficient m2 s−1.
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15.3. Initialisation for the tracer module

The tracer section determines, if tracer variables are included in the model run, and if
they are, how they are initialised.

&tracer

lhumidity = F,

lpassive = T,

npas = 1,

tra_surftyp = 0,

tra_amp = 1e-3,

tra_lx = 4.0,

tra_ly = 4.0,

tra_cx = 50,

tra_cy = 100, /

The Boolean parameters lhumidity and lpassive enable parts of the tracer module, if
set to true. lhumidity includes three tracer variables with named “water vapour”, “cloud
water” and “precip water” in the calculations. lpassive adds npas passive tracers to the

Currently,
there are
no param-
eterisations
for moist
processes in
the model.
Hence, this
parameter
currently
just adds
three more
passive trac-
ers with
suggestive
names.

calculations, which are just named “tracer 1” to “tracer npas”.

The following parameters determine how to initialise all tracer variables: The first param-
eter tra surftyp defines the type of the surface function. Currently there are five shape
functions, and two additional shape IDs (−1 and 0) bear special meaning: 0 specifies an
all-zero initial field, −1 an arbitrary initial field that is read from the setup netCDF file.
Consequently, valid values for this parameter range from −1–5. They are summarized in
table 15.1.

The other parameters determine the generic parameters for an initialisation by an idealised
shape: First the amplitude tra amp (in units of the tracer) of the shape, followed by the
length scales of the structure in x and y, called vor lx and vor ly, and the centre of the
structure vor cx and vor cy. The length scale and centre are given in grid points and
may be floating point numbers. If either the centre or the length scale for one axis is
zero, then a ridge-like structure is generated, as the dependence of shape function on this
axis is omitted. By this means, one could for example generate a triangular ridge in the
y-direction by setting vor cy or vor ly to zero, and choosing vor surftyp= 2.

15.4. Initialisation for the vorticity

The vorticity field may optionally be initialised via some idealized shape, analogously to
the tracer initialisation.

&init

vor_surftyp = 0,

vor_amp = 5e-5,

vor_lx = 3.0,
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Table 15.1.: Description of the implemented surface types

ID Description

−1 Read initial field from setup netCDF file
0 No surface, whole field set to zero
1 Cuboid with sharp edges of length 2lx and 2ly.
2 Cone with elliptic base area
3 Gaussian or bell-shape
4 Witch of Agnesi function (similar to Gaussian but with x−2-falloff)
5 Dipole structure with exponential falloff

vor_ly = 3.0,

vor_cx = 100,

vor_cy = 60, /

The parameters in this section are defined in the same way as in the previous section. The
only difference is that the amplitude must now be given in the units of vorticity, s−1. For
top surftyp=−1, a variable called “vorticity” is read from the setup netCDF-file.

15.5. Topography

The topography can be defined analogously to the initialisation field for the vorticity and
the tracers in the previous sections.

&topo

top_surftyp = 3,

top_amp = 2000,

top_lx = 5.0,

top_ly = 15.0,

top_cx = 45,

top_cy = 90, /

The parameters in this section are defined in the same way as in the previous sections.
The only difference is that the amplitude must now be given in the units of the orography,
either Pa = kg m−1s−2 or m. For top surftyp=−1, a variable called “surface pressure”
for BedymoP or “zsur” for BedymoZ is read from the setup netCDF-file.

15.6. Time and output control

The final section of the configuration file defines all parameters that are related to model
time and output of the meteorological results.
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&timeout

lout = T,

loutbdr = T,

loutinit = T,

loutend = T,

lcoards_compatible = T,

tstop = 0,

tsstop = 604800,

dtout = 43200, /

The Boolean parameters lout, loutbdr, loutinit, loutend and lcoards compatible

define specifics of if and how the results are written to a netCDF file. The output of results
can be suppressed completely by disabling lout. The following parameters determine if
(1) the boundaries shall be part of the output, (2) the initialisation field shall be part of
the output, (3) the last time step shall be part of the output and (4) if the output shall be
compatible to the COARDS 1 convention. The latter is strongly encouraged, but involves
the transposition of all fields that are part of the output.

The parameters tstop and tsstop both define the end of the model run: For tstop it can
must given in time steps, for tsstop it must be given in seconds. There is no precedence
for these parameters, the model will stop as soon as one of the end conditions is met. It
is therefore strongly recommended to set the unused parameter to zero.

The parameter dtout defines the output interval in seconds. Please note, that the output
likely is not directly valid for the specified intervals, as the first time step after completing
the interval is written. Depending on the time step, this might be some hundred or
thousand seconds after the specified output times.

16. Running via Fortran executable

Running $ ./bedymo.x -v shows some relevant information about the binary and for
running the model:

$ ./bedymo.x -v

bedymo Z beta-0.18.3-3-g045111a (2012-11-06 13:43:51 +0100)

(c) 2011-2012 Clemens Spensberger <csp001@uib.no>

Geophysical Institute @ University of Bergen

Compiler: gfortran -pedantic -O2

Compile host: gfi063203.klientdrift.uib.no

Compile time: 2012-12-19 13:34:18 +0100

1COARDS is short for “Cooperative Ocean/Atmosphere Research Data Service”. More information:
http://ferret.wrc.noaa.gov/noaa_coop/coop_cdf_profile.html.

http://ferret.wrc.noaa.gov/noaa_coop/coop_cdf_profile.html
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Known arguments:

-f, --file: Manually specify input file as the following argument.

The file is expected to be a bedymo namelist for a

standard run or a bedymo netcdf-file for a restart run.

-h, --help: Print this information and exit.

-i, --info: Print this information and exit.

-q, --quiet: Suppress any output on stdout.

-r, --restart: Initiate restart run. Expects new end of model run

as following argument. Unit: Seconds.

-s, --setup: Manually specify a setup netcdf-file. It should contain

basic state winds and/or topography, as specified in

the configuration namelist.

-v, --version: Print this information and exit.

The version information is drawn from the git repository at compile time. It shows the
latest tagged (git slang for “named”) version, which is in this case beta-0.18.3. The
appendix 3-g0451111a to the version reveals that three revisions have been committed into
the repository since the original version, and that the latest commit has the (shortened)
git hash g0451111a. Beneath the copyright information some compiler info is given to
be able to trace the binaries. The known arguments section follows the standard UNIX
formatting; the possible arguments and their alternative version are explained after the
colon.

In most cases bedymo will be called without any arguments. In this case it uses the
standard input file bedymo std.nml as the model configuration. For the restart case the
standard input file – containing both the meteorological fields and the model configuration
– is bedymo restart.nc.

17. Running via python runscript

18. Running via BedymoGUI

19. Model output

Bedymo produces three different kinds of output: (1) Progress information on stdout,
(2) status information, (3) the model configuration and other incidences in a report file
and last but not least (4) the actual meteorological results in a netCDF file. The output
of progress information can be suppressed by providing the -q or --quiet parameter.
This mechanism is also used by BedymoGUI and the python runscript to avoid that the
model clutters the python shell. The meteorology output can also be disabled completely
by setting lout to false in the model configuration (see chapter 15.6). This might be useful,
if the model results shall only be ad-hoc and live visualised, e.g. by BedymoGUI.

In the following sections, the model status and report files and the netCDF output are
described in detail.
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19.1. Report file

The head section of the report contains practically the same information as one could
obtain by running ./bedymo.x -v, which is described in detail in section 16. The only
additional information is the starting time for the model run in the third line of the
report.

# ---------------------------<| Bedymo Report |>--------------------------

#

# Start time: 08.11.2011 11:43:19 +0100

# Host name: gfi063203.klientdrift.uib.no

# Version: bedymo alpha-0.9.6-3-g70b391b (2011-11-02 14:12:50 +0100)

# Compiler: gfortran

# Compiler options: -pedantic -O2

# Compile time: 2011-11-08 11:42:54 +0100

# Compile host: gfi063203.klientdrift.uib.no

#

# ---------------------------<| Configuration |>--------------------------

Here, the configuration namelist follows. It is identical to the configuration namelist, that
was used as input. For this reason, this part is omitted in the description of the report
file. The configuration namelist is described in section 15.

Please note that all lines in the report, except for the reprint of the namelist are commented
out by the hash sign “#” in the beginning of each line. For this reason, each report file is
a valid input namelist in its own right, which could be used to re-start a model run with
an identical configuration.

# ---------<| Starting integration |>---------

#

# --------------------------<| Report Summary |>--------------------------

#

# End time: 11.11.2011 13:53:12 +0100

# Version: bedymo alpha-0.9.6-3-g70b391b

# Number of errors: 0

# Number of warnings: 0

# Number of notices: 0

#

# -------------------------<| Bedymo Report End |>------------------------

After the reprint of the model configuration, the actual integration is starting. In the
above example no errors, warnings or notable events occurred. Thus, the start of the
model run is directly followed by footer section of the report. In addition to the end time
of the model run and the (repeated) version information the number of errors, warnings
and notable events is given. In the example nothing bad happened, such that all these
counters are zero.
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As an error causes an immediate termination of the model run, this counter will never
exceed 1.

19.2. Status file

The second output file permits to get a short glance of the model status, e.g. to check
how far the integration has progressed or if the model fields are still physically meaningful.
The Fortran format for each line is (a8,2i6,i10,3i3,9e15.7). An example output (in
which the last seven columns are omitted) for the first five time steps is given below:

Status 1 300 300 1 1 4 0.0000000E+00 0.9720000E+07 [...]

Status 2 5428 5728 2 2 3 0.0000000E+00 0.9720012E+07 [...]

Status 3 4796 10524 3 3 4 -0.7599594E-17 0.9724631E+07 [...]

Status 4 3966 14490 0 0 1 0.1795092E-19 0.9736113E+07 [...]

Status 5 3354 17844 1 1 4 0.3100361E-07 0.9752037E+07 [...]

[...]

The meaning of the first seven columns is

1. the string “Status”,

2. the time step number,

3. the integration time step ∆t,

4. the model time in seconds since the model start,

5. the time index tlo,

6. the time index tli,

7. the time index tln.

They are followed by nine floating point values, showing

8. the domain integrated vorticity,

9. the domain integrated kinetic energy,

10. the domain averaged x-wind,

11. the domain averaged y-wind,

12. the domain averaged stream function,

13. the domain averaged vorticity tendency due to the beta effect,

14. the domain averaged vorticity tendency due to x-advection,

15. the domain averaged vorticity tendency due to y-advection,

16. the total domain averaged vorticity tendency.
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A first assessment of how meaningful the solution is may be obtained by checking the
conservation of vorticity, energy and momentum based on columns 8–11. Also, a very
small dynamic time step in column 3 indicates a blown-up solution with very high wind
speeds.

19.3. Meteorology output

The meteorology is output as a NetCDF file, that complies to the NetCDF Climate
and Forecast (CF) Metadata Conventions2, version 1.5. In addition, if the parameter
lcoards compatible is set (which is highly recommended, see section 15.6) the file also
complies to the COARDS 3 standard.

The NetCDF file stores all relevant information to repeat an the model run, or to extend
the modelled period by restarting and using the latest output as an initialisation. The
information about the model version, compilation and configuration are all stored as global
attributes (see table 19.1).

Currently the variables that are written cannot be configured. In principle all fields can
be diagnosed directly from the stream function as this is the only prognostic variable. For
convenience, however, also vorticity, the wind velocity components and a temperature-
like quantity are written. This information, along with the coordinate axis in which the
variables are defined are summarised in table 19.2.

The main attributes for these variables and the coordinate variables in the NetCDF file
are compiled in table 19.3.

2More information: http://cf-pcmdi.llnl.gov/documents/cf-conventions/1.5/cf-conventions.

html
3COARDS is short for “Cooperative Ocean/Atmosphere Research Data Service”. More information:
http://ferret.wrc.noaa.gov/noaa_coop/coop_cdf_profile.html.

http://cf-pcmdi.llnl.gov/documents/cf-conventions/1.5/cf-conventions.html
http://cf-pcmdi.llnl.gov/documents/cf-conventions/1.5/cf-conventions.html
http://ferret.wrc.noaa.gov/noaa_coop/coop_cdf_profile.html
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Table 19.1.: Global attributes for the Bedymo meteorology output.

Name Description

title The string “Bedymo model output”.
institution The string “Geophysical Institute @ University of Bergen”.
Conventions Which conventions does this NetCDF file subscribe to? Al-

ways “CF-1.5”, often also “COARDS”.
model version The model version. Refer to chapter 16 for a detailed de-

scription.
model version date When was the above model version created?
model config A list of values for all variables in the Bedymo namelist. It

is used for restart, but may also be used for documentary
purposes.

model config version An integer value, that is incremented whenever the above
list changes.

compile host On which host was the binary compiled, that produced this
output?

compile time When was the binary compiled, that produced this output?
compile cmd Which compiler was used with which options to compile the

binary that produced this output?

Table 19.2.: Variables in the Bedymo meteorology output.

Name Axes Description

time step (T ) Time step that was output.
stream function (T, Pf , Yb, Xb) Stream function.
vorticity (T, Pf , Yb, Xb) Relative vorticity.
x wind (T, Pf , Y,X) Wind velocity component along the x-axis.
y wind (T, Pf , Y,X) Wind velocity component along the y-axis.
p wind (T, Ph, Yb, Xb) Wind velocity component along the p-axis.

temperature (T, Ph, Y,X) Change of stream function with height ∂ψ
∂p .

surface pressure (Yb, Xb) Stationary surface pressure field representing
orography.

Table 19.3.: Variable attributes for the variables in table 19.2 and coordinate variables.

Name Description

standard name Name of the variable according to CF-1.5.
units Units for the variable in a UDUNITSa compatible format.
axis Type of axis for coordinate variables: “X”, “Y”, “Z” or “T”.
positiveb Used for the pressure axis with the value “down” to indicate that

the pressure is increasing downwards.
amore information: http://www.unidata.ucar.edu/software/udunits/.
boptional

http://www.unidata.ucar.edu/software/udunits/


V. Model development

20. Source code organisation

The source code is organised in different modules. The following list provides an overview
on the purposes of each. They are ordered by their appearance in bedymo.f95, which is wip
the order of their hierarchy of inter–dependencies. Each module may thus only depend on
(and use variables from) modules higher up on that list.

kind Defines the precision for integer and real numbers used throughout the model.

consts Defines several physical parameters, plus some meta–information (like version,
compiler, etc.) about the model itself.

ptr Defines procedure pointers and their interfaces as a new data types.

logfile Provides a logging and error reporting mechanism.

surflib Provides functions to create idealised surfaces (e.g. for topography, initialisation
for variables, etc.)

config Reads and writes the model configuration from namelists and bedymo netCDF
files.

metin Reads bedymo netCDF files and extracts variables necessary for restart or non-
idealised initialisation.

grid Defines the model domain and grid; provides generic subroutines for setting boundary
values and for applying and inverting the Laplacian.

diag Defines diagnostic variables, such as the horizontal wind velocity components and
provides functions to calculate these.

advection Provides functions to calculate the advection terms.

trace Tracer advection module, providing the time integration for tracer variables and
hooks for among others water vapour parameterisations.

prog Defines prognostic variables and subroutines to calculate these. In a strict sense this
would only be the vorticity, but due to their close relation also stream function and
vertical wind velocity are counted here as ”prognostic”.

timeint Provides functions that implement the different time integration schemes

metout Writes the model results as bedymo netCDF files, that also serve as restart files.

runctrl Provides functions for initialising, running and terminating the model.
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bedymo Is not a Fortran module, but the main program. Parses command–line arguments
and subsequently invokes the runctrl module.

Table 20.1.: A non–comprehensive list of variables that are widely used in the source code

Name Module Symbol Description

advptr ptr Procedure pointer type, pointing to
an advection scheme implementa-
tion

alpha timeint α Coupling constant of the two leap–
frog time steps in the Robert–
Asselin filter

avail int schemes runctrl Array of procedure pointers (type
intptr) containing all available
time–integration schemes

axy grid Xa, Ya First index of variable arrays in-
cluding boundaries for x– and y–
directions

bdr ew grid Boundary condition index for the
eastern and western boundaries

bdr sn grid Boundary condition index for the
eastern and western boundaries

betacor(Y ,X) grid β Change of the Coriolis parameter
with y

bruntvf(Y ,X) grid N2 Square of the Brunt-Väisälä fre-
quency

config nml config String containing the complete
model configuration; It is saved to
a netCDF generic attribute to allow
restarting from netCDF files.

config nml version config Version of model configuration vari-
able set, that is necessary to restart

dadxplus advection Array of procedure pointers (type
advptr) containing all available ad-
vection schemes (for positive wind
speeds)

dadxminus advection Array of procedure pointers (type
advptr) containing all available ad-
vection schemes (for negative wind
speeds)

damp coeff prog Dp Damping coefficient

div(P,Y ,X) diag −∂ω
∂p −

d ln ps
dt Divergence of the wind field

dp(Yb,Xb) grid ∆p Vertical grid spacing
dt timeint ∆t Time step
dx(Yb,Xb) grid ∆x Horizontal grid spacing (x–

direction)
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Name Module Symbol Description

dy(Yb,Xb) grid ∆y Horizontal grid spacing (y–
direction)

ekman coeff prog r Ekman friction coefficient
fcor(Y ,X) grid f , f0 Coriolis parameter
gen surface surflib Array of procedure pointers (type

surfptr) containing all available
functions

infile bedymo Overrides the standard input file
names. Namelist file for standard
model run or bedymo netCDF file
for restarted run

intptr ptr Procedure pointer type, pointing to
a time–integration scheme imple-
mentation

int scheme runctrl Procedure pointer (type intptr)
pointing to the employed time–
integration scheme

int scheme id runctrl Index of the employed time–
integration scheme

ioerr metin/out NetCDF error code for any netCDF
read or write operation

ladv config Enable advection?
ladv ageo config Enable advection by ageostrophic

wind components?
lcoards compatible config Make the output compatible to the

COARDS standardisation project?
(involves transposing all output
fields)

lconst adv config Enable advection only by stationary
basic state?

lconst coriolis config Enable constant Coriolis parameters
(f , β) within the model domain?

lcoriolis config Enable Coriolis force?
ldamp config Enable scale–selective damping? (∝

∇4ψ)
lforce config Enable forcing of the vorticity and

vertical velocity fields?
lfriction config Enable ekman friction?
llpsi(P,Yb,Xb) prog ∇2ζ Laplacian of the vorticity (used in

damping term)
lout runctrl Output meteorological fields during

the model run?
loutbdr config Include boundaries of prognostic

variables in the output?
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Name Module Symbol Description

loutinit runctrl Output meteorological fields di-
rectly after the initialisation?

loutend config Output meteorological fields at the
end of the model run?

lquiet runctrl Suppress any output (e.g. progress
info) on stdout?

lpsi(P,Yb,Xb,T) prog ζ Vorticity (or the Laplacian applied
to the stream function psi)

ltilting config Enable the tilting term?
nerror logfile Number of errors encountered dur-

ing model run
ncid metin/out NetCDF opened file index
ni kind Precision (byte length) of integers,

set to 4
nnote logfile Number of notifications encoun-

tered during model run
np grid P Number of grid points in the vertical
nr kind Precision (byte length) of reals, set

to 8
nt timeint T Number of time levels available for

each prognostic variable
nwarn logfile Number of warnings encountered

during model run
nx grid X Number of grid points in the model

domain in x–direction
ny grid Y Number of grid points in the model

domain in y–direction
order max advection The maximum advection scheme or-

der used
p0 const p0 Reference surface pressure, set to

1013.25 hPa
ps(Yb,Xb) grid ps Surface pressure

psdx(Yb,Xb) grid ∂ps
∂x Surface pressure gradient from to-

pography in x–direction

psdy(Yb,Xb) grid ∂ps
∂y Surface pressure gradient from to-

pography in y–direction
psi(P,Yb,Xb,T) prog ψ Stream function
restart bedymo If greater than zero: New end of the

restarted model run
surfptr ptr Procedure pointer type, pointing to

a surface generation function
t timeint n Time step number
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Name Module Symbol Description

temp(P,Y ,X) diag ∂ψ
∂p Change of stream function with

pressure, may be interpreted as a
temperature

tli timeint ti Index of the intermediate time level
in the integration

tln timeint tn Index of the new time level in the
integration

tlo timeint to Index of the old time level in the in-
tegration

ts timeint t Time since model start
u(P,Y ,X) diag u Wind velocity component in x–

direction
v(P,Y ,X) diag v Wind velocity component in y–

direction

vor tend(P,Y ,X) timeint ∂ζ
∂t Vorticity tendency due to all con-

tributing terms
w(P,Yb,Xb) diag ω Vertical (pressure coordinate) wind

speed
zx grid Xb +Xa Last index for variable arrays in-

cluding boundaries for x–direction
zy grid Yb + Ya Last index for variable arrays in-

cluding boundaries for y–direction

21. Call tree

Table 21.1.: Bedymo call tree for a standard model run

Subroutine Module Remarks

main program bedymo

parse cmdline bedymo

init bedymo runctrl

init logfile logfile

init surflib surflib

config by namel config

init grid grid

ilaplace precond init grid

init diag diag

init advection advection

init trace trace

gen surface surflib
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Subroutine Module Remarks

init prog prog

gen surface surflib

set latbdr l grid

ilaplace grid

laplace grid several times per iteration
ilaplace precond LU grid several times per iteration
set latbdr grid several times per iteration
ilaplace precond L grid several times per iteration

set latbdr grid

cal hor wind diag for the temperature advection
cal ver wind prog

cal advx advection

cal advy advection

cal temp force diag

cal temp diag

set latbdr grid

cal div diag

cal hor wind diag possibly including ageo. winds
init timeint timeint

init metout metout

run runctrl

output metout if loutinit
entering integration loop

int scheme timeint

cal vor tendency prog

cal advx advection

cal advy advection

cal rotation prog

cal betaeffect prog

cal tilting prog

cal vor friction prog

cal vor force prog

cal trace tendency trace

cal trace force trace

cal advx advection for each tracer
cal advy advection for each tracer

step apply timeint

set latbdr l grid

ilaplace grid

laplace grid several times per iteration
ilaplace precond LU grid several times per iteration
set latbdr grid several times per iteration
ilaplace precond L grid several times per iteration
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Subroutine Module Remarks

set latbdr grid for vorticity and each tracer
step prepare timeint

cal ver wind prog

cal advx advection

cal advy advection

cal temp force diag

cal temp diag

set latbdr grid

cal div diag

set latbdr l grid

ilaplace grid if ladv ageo

laplace grid several times per iteration
ilaplace precond LU grid several times per iteration
set latbdr grid several times per iteration
ilaplace precond L grid several times per iteration

set latbdr grid if ladv ageo

cal hor wind diag

output metout if output time step
end of integration loop

output metout if loutend

term bedymo runctrl

term metout metout

term timeint timeint

term prog prog

term trace trace

term diag diag

term grid grid

term logfile logfile

22. Change log

Versions of BedymoZ

beta 0.18.3 Introduced temperature friction to be consistent with vorticity and reduce
numerical instabilities.

beta 0.18.2 Bugfix in the calculation of the vertical wind, introduced ldt dyn.

beta 0.18.1 Checks and fixes for the 4th-order Runge-Kutta scheme.

beta 0.18.0 Major revision of the time integration handling: Moved prog before timeint,
implemented RAW-filter and introduced a maximum time step of 3 h. Changed
recommended time stepping to Leap-Frog.
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beta 0.16.2 Adapted to new UiB infrastructure.

beta 0.16.1 Several bugfixes making the 3D and linear modes of operation usable again.
Adapted compile script for skd-cyclone and MacOS.

beta 0.16.0 Introduced a tracer transport module and the possibility for non-idealised
topography and basic-state winds by reading those fields from a setup netCDF-file.

beta 0.14.1 Adapted to new UiB infrastructure.

beta 0.14.0 Introduced Semi-Geostrophy mode, taking into account the ageostrophic ad-
vection.

beta 0.12.4 Adapted to new UiB infrastructure.

beta 0.12.3 Consistent boundary conditions for the new grid and the flux form of the
advection.

beta 0.12.2 Maintenance version, further cleaned-up code and improved BedymoGUI.

beta 0.12.1 Maintenance version, cleaned-up code and improved compile script.

beta 0.12.0 Introduction of ILU(0) preconditioning. Adapted the advection terms to flux
form, consequently changed to a staggered grid (Arakawa C) in the horizontal.

beta 0.10.1 Adapted to new UiB infrastructure.

beta 0.10.0 Adaption to z-coordinate system, rename to BedymoZ.

Versions of BedymoP

beta 0.11.1 Adapted to new UiB infrastructure.

beta 0.11.0 Consistent use of the p-coordinate system, rename to BedymoP.

Versions prior to the split-up

alpha 0.9.8 Adapted to new UiB infrastructure.

alpha 0.9.7 Improvements to BedymoGUI and to the compile script.

alpha 0.9.6 Bug-fix: Sign error in continuity equation.

alpha 0.9.5 Technical improvements: git version tag in precompiler, Bedymo executable
independent of LD LIBRARY PATH, compile script for gfi-storm.

alpha 0.9.4 Moved basic state winds ug, vg to namelist. Consequently introduced
config nml version 2.

alpha 0.9.3 Introduced lquiet for BedymoGUI compatibility.

alpha 0.9.2 Proper cleanup (among others finishing netCDF output) in error case.

alpha 0.9.1 Introduced boundary condition “determined by ψ”.

alpha 0.9.0 Introduced topography effect and added the ability to restart from netCDF-
files.
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alpha 0.8.0 Bug-fix in subroutine grid/ilaplace: to improve energy conservation. Intro-
duced error handling + logfile + status file mechanisms.

alpha 0.7.0 First numbered version.

23. Licence

To be determined.
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Appendix

A. Construction of higher-order upwind-biased advection
schemes

The derivation will be demonstrated using the one–dimensional advection equation of any
quantity χ by the wind field u > 0:

∂χ

∂t
+ u

∂χ

∂x
= F . (A.1)

Using Taylor–expansion of the advected quantity χ

χ(x+∆x) = χ(x)+
∂χ

∂x
∆x+

∂2χ

∂x2
∆x2

2
+
∂3χ

∂x3
∆x3

6
+
∂4χ

∂x4
∆x4

24
+
∂5χ

∂x5
∆x5

120
+O(∆x6) (A.2)

and the shorthand notation χi+m ≡ χ(x+m∆x) one can easily evaluate the left-hand side
of the following equations.

χi − χi−1 = 1
∂χ

∂x
∆x−1

∂2χ

∂x2
∆x2

2
+1

∂3χ

∂x3
∆x3

6
−1

∂4χ

∂x4
∆x4

24
+1

∂5χ

∂x5
∆x5

120
+O(∆x6) (a)

χi+1 − χi−1 = 2
∂χ

∂x
∆x +2

∂3χ

∂x3
∆x3

6
+2

∂5χ

∂x5
∆x5

120
+O(∆x7) (b)

χi+1 − χi−2 = 3
∂χ

∂x
∆x−3

∂2χ

∂x2
∆x2

2
+9

∂3χ

∂x3
∆x3

6
−15

∂4χ

∂x4
∆x4

24
+33

∂5χ

∂x5
∆x5

120
+O(∆x6) (c)

χi+2 − χi−2 = 4
∂χ

∂x
∆x +16

∂3χ

∂x3
∆x3

6
+64

∂5χ

∂x5
∆x5

120
+O(∆x7) (d)

χi+2 − χi−3 = 5
∂χ

∂x
∆x−5

∂2χ

∂x2
∆x2

2
+35

∂3χ

∂x3
∆x3

6
−65

∂4χ

∂x4
∆x4

24
+275

∂5χ

∂x5
∆x5

120
+O(∆x6) (e)

(A.3)

For odd–ordered schemes these equations suffice. They can be constructed taking into
account the first (first three, all five) equation(s), neglecting all terms of order O(∆x2)
(O(∆x4), O(∆x6)) and higher, and solving for ∂χ

∂x . For the even–ordered schemes one
needs to replace the second and fourth equation of the above system by either the first
two or the second two equations of (A.4). The difference between the two sets lies in
the computational stencil used: for the above two equations its the three (five) points
centred about the current grid point with index i, while the stencil is centred about one
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point upwind (i − 1 for u > 0) in the lower two equations. All four equations (A.4) may
be truncated after O(∆x4), as they won’t be used in the construction of the fifth–order
scheme.

χi+1 + χi−1 − 2χi = +2
∂2χ

∂x2
∆x2

2
+2

∂4χ

∂x4
∆x4

24
+O(∆x6) (a)

χi+2 + χi−2 − 2χi = +8
∂2χ

∂x2
∆x2

2
+32

∂4χ

∂x4
∆x4

24
+O(∆x6) (b)

χi + χi−2 − 2χi =−2
∂χ

∂x
∆x +4

∂2χ

∂x2
∆x2

2
−8

∂3χ

∂x3
∆x3

6
+16

∂4χ

∂x4
∆x4

24
+O(∆x5) (c)

χi+1 + χi−3 − 2χi =−2
∂χ

∂x
∆x+10

∂2χ

∂x2
∆x2

2
−26

∂3χ

∂x3
∆x3

6
+82

∂4χ

∂x4
∆x4

24
+O(∆x5) (d)

(A.4)

A.1. The first–order upwind scheme

Taking into account only (A.3a), and neglecting terms of order O(∆x2) and higher, one
readily obtains the standard first–order upwind scheme

∂χ

∂x
≈ χi − χi−1

∆x
. (A.5)

A.2. Two variants for second–order upwind schemes

Taking 2 ·(A.3a)+(A.4a), such that higher–order spatial derivations of χ cancel each other
out, yields the well–known centered difference scheme

∂χ

∂x
≈ χi+1 − χi−1

2∆x
. (A.6)

This scheme is no longer upwind–biased and is can be proven to be unconditionally un-
stable when used as a spatial discretisation in the advection term. This scheme and the
equations (A.4a, A.4b) are only provided in this derivation to show the connection to the
advection schemes published by Tremback et al. (1987). In this study, the odd–ordered
schemes derived in this section and the even–ordered schemes derived with (A.4a, A.4b)
appear as the terms linear in the Courant number (called α in Tremback et al. (1987),
p.541).

Using the upwind shifted stencil in (A.4c, A.4d) the second–order upwind scheme is con-
structed by 4 · (A.3a) + (A.4c):

∂χ

∂x
≈ 3χi − 4χi−1 + χj−2

6∆x
. (A.7)
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A.3. The third–order upwind scheme

Using (A.3a-c), neglecting terms of higher order than O(∆x3) and calculating 3 · (A.3a)−
(A.3c) + 3 · (A.3b), the resulting equation can be solved for ∂χ

∂x , yielding:

∂χ

∂x
≈ 2χi+1 + 3χi − 6χi−1 + χi−2

6∆x
(A.8)

A.4. Two variants for fourth–order upwind schemes

First, again using the centered stencil corresponding to Tremback et al. (1987), the ap-
proximation

∂χ

∂x
≈ −χi+2 + 8χi+1 − 8χi−1 + χi−2

12∆x
(A.9)

is obtained by combining the equations (A.3a,c) and (A.4a,b) by taking 18 · (A.3a) + 10 ·
(A.4a)−2·(A.3c)−(A.4b). As expected the resulting scheme is no longer upwind–biased.

As for the second–order scheme, an upwind–biased variant can be constructed by moving
the computational stencil one point upwind, as done in (A.4c,d). Adding 18 · (A.3a) + 10 ·
(A.4c) + 4 · (A.3c)− (A.4d) and solving for ∂χ

∂x yields

∂χ

∂x
≈ 3χi+1 + 10χi − 18χi−1 + 6χi−2 − χi−3

12∆x
. (A.10)

A.5. The fifth–order upwind scheme

Last but not least, by using all equations in (A.3) one can construct a fifth–order upwind
scheme. As pointed out in section A.2, the available equations have to be combined such,
that higher order derivatives of χ vanish. With this constraint the following system of
equations for the weight factors a1 to a5 of the five individual equations in (A.3) emerges:

0 = −a1 −3a3 −5a5
0 = a1 +2a2 +9a3 +16a4 +35a5
0 = −a1 +15a3 −65a5
0 = a1 +2a2 +33a3 +64a4 +275a5

.

The remaining degree of freedom (which corresponds to the freedom of expanding or
reducing the resulting fraction in (A.11)) is used to restrict the solution set of this system
of equations to the smallest natural numbers solving it. The solution respecting this
constraint is given by a1 = 20, a2 = 40, a3 = −10, a4 = −5, a5 = 2. Hence, calculating
20 · (A.3a) + 40 · (A.3b)− 10 · (A.3c)− 5 · (A.3d) + 2 · (A.3e) and solving for ∂χ

∂x yields the
fifth–order upwind–scheme:

∂χ

∂x
≈ −3χi+2 + 30χi+1 + 20χi − 60χi−1 + 15χi−2 − 2χi−3

60∆x
(A.11)
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A.6. Extension for negative wind speeds and more dimensions

The same derivations as outlined in the sections above can be carried out for u < 0.
In this case, moving the stencil upwind means moving its centre from i towards i + 1/2
for odd–ordered schemes and towards i + 1 for even–ordered schemes. It soon becomes
obvious, that one can obtain the corresponding scheme for wind speeds of the opposite
sign by changing both the sign of the weighting coefficients and of the index offsets in the
numerator of the respective schemes.

The computationally expensive use of an if–structure in the loop over all grid cells can
be avoided by using the min and max functions every higher–level programming language
provides:

ui
∂χ

∂x

∣∣∣
i

= max(ui, 0) · ∂χ
∂x+

∣∣∣
i
+ min(ui, 0) · ∂χ

∂x−

∣∣∣
i

. (A.12)

The approximations for ∂χ
∂x+
|i and ∂χ

∂x− |i by the different schemes are summarised in table
A.1.

In multi–dimensional advection, the Taylor expansion (A.2) used to derive the advection
scheme would contain many cross derivatives along several dimensions. As the amount of
data points used in the computational stencil would increase with the order of the scheme
to the power of the flow dimension, this technique is soon getting unfeasibly complex to
compute and derive. An elegant way to circumvent this problem in multi–dimensional
advection is using the time–splitting technique (Smolarkiewicz , 1982; Tremback et al.,
1987). Following this technique, the one–dimensional advection is applied separately for
every dimension.
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Table A.1.: Overview over upwind–biased spatial discretisation schemes

Order
∂χ

∂x+

∣∣∣
i

∂χ

∂x−

∣∣∣
i

1st
χi − χi−1

∆x

χi+1 − χi
∆x

2nd
3χi − 4χi−1 + χj−2

6∆x

−χj+2 + 4χi+1 − 3χi
6∆x

3rd
2χi+1 + 3χi − 6χi−1 + χi−2

6∆x

−χi+2 + 6χi+1 − 3χi − 2χi−1
6∆x

4th
3χi+1 + 10χi − 18χi−1 + 6χi−2 − χi−3

12∆x

χi+3 − 6χi+2 + 18χi+1 − 10χi − 3χi−1
12∆x

5th
−3χi+2 + 30χi+1 + 20χi − 60χi−1 + 15χi−2 − 2χi−3

60∆x

2χi+3 − 15χi+2 + 60χi+1 − 20χi − 30χi−1 + 3χi−2
60∆x

B. Construction of higher-order upwind-biased flux estimator
schemes

The derivation will be demonstrated using the one–dimensional flux divergence equation
of any quantity χ by the wind field u > 0:

∂χ

∂t
+
∂uχ

∂x
= F . (B.1)

This equation is simply discretised by by the centered difference

∆χi
∆t

= −ui+0.5χi+0.5 − ui−0.5χi−0.5
∆x

+ Fi . (B.2)

The horizontal winds are defined on a staggered grid, such that ui+0.5 is directly available.
χ however is only defined on the unstaggered grid, and hence must be interpolated on to
the staggered grid.

Using the same Taylor expansion (A.2) as above, the following set of equations follows:

χi−0.5 − χi =−1

2

∂χ

∂x
∆x+

1

4

∂2χ

∂x2
∆x2

2
−1

8

∂3χ

∂x3
∆x3

6
+O(∆x4) (a)

χi+0.5 − χi = +
1

2

∂χ

∂x
∆x+

1

4

∂2χ

∂x2
∆x2

2
+

1

8

∂3χ

∂x3
∆x3

6
+O(∆x4) (b)

χi−1.5 − χi =−3

2

∂χ

∂x
∆x+

9

4

∂2χ

∂x2
∆x2

2
−27

8

∂3χ

∂x3
∆x3

6
+O(∆x4) (c)

χi+1.5 − χi = +
3

2

∂χ

∂x
∆x+

9

4

∂2χ

∂x2
∆x2

2
+

27

8

∂3χ

∂x3
∆x3

6
+O(∆x4) (d)

(B.3)

Analogous to the construction of the advection schemes, the flux estimators can be con-
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structed by linearly superposing those equations.

(a) χi = χi−0.5 +O(∆x)

(a) + (b) χi = 1
2

(
χi+0.5 + χi−0.5

)
+O(∆x2)

(c)− 3(b)− 6(a) χi = 1
8

(
− χi−1.5 + 6χi−0.5 + 3χi+0.5

)
+O(∆x3)

(d) + (c)− 9(b)− 9(a) χi = 1
16

(
− χi−1.5 + 9χi−0.5 + 9χi+0.5 − χi+1.5

)
+O(∆x4)

(B.4)
These flux estimatators correspond to the ones derived by Tremback et al. (1987). However,
as they note, those flux estimators do not reduce to the advection schemes derived in
appendix A.

How to de-
rive the
other flux
divergence
variants?

C. List of symbols and hints on notation

Table C.1.: List of mathematical symbols as they are used in the documentation.

Symbol Unit Description

a m Radius of the earth
α m3 kg−1 or 1 Specific volume or coupling constant for Robert-Asselin filter
β s−1 Secondary Coriolis parameter = fy = 2a−1Ω cosϕ

cp, cv J kg−1 K−1 Specific heat capacity of air for constant pressure and con-
stant volume

γ rad Deformation angle: the angle between the x-axis and the
axis of dilatation

D m2 s−1 Damping coefficient for scale-selective damping
D s−1 Divergence = ux + vy
δ s−1 Total deformation = (δ2+ + δ2×)1/2

δ+, δ× s−1 Streching deformation = ux − vy and shear deformation =
uy + vx

η m or Pa General vertical coordinate, stands for z or p
η̇ m s−1 or Pa s−1 General vertical velocity, stands for w or ω
f s−1 Primary Coriolis parameter = 2Ω sinϕ
f ′ s−1 Secondary Coriolis parameter = 2Ω cosϕ
Fr m s−2 General forcing terms in for the momentum equation, e.g.

frictional terms
g, g m s−2 Graviational acceleration of the Earth, g = (0, 0, g)
i, j,k 1 Unit vectors in x, y and z (or equivalent for different coor-

dinate systems) directions
J J kg−1 s−1 Diabatic heating in the temperature tendency equation
λ rad Longitude
N s−1 Brunt-Väisälä frequency
ω Pa s−1 Vertical velocity in pressure coordinates
ω s−1 Three-dimensional vorticity vector
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Symbol Unit Description

Ω s−1 Rotation frequency of the earth
p Pa Pressure
ps Pa Surface pressure
ϕ rad Latitude
Φ m2 s−2 Geopotential
q s−1 Quasi-geostrophic potential vorticity

Q, Qp m s−2, m2 s−2 Pa−1 Diabatic heating in z- and p-coordinates
ψ m2 s−1 Horizontal streamfunction
r s−1 Damping coefficient for Ekman scale-independent damping
R J kg−1 K−1 Ideal gas constant for air
ρ kg m−3 Density
σ 1 Terrain-following vertical coordinate defined by p/ps
t s Time
T K Temperature
θ K Potential temperature
χ m2 s−1 or any Velocity potential or meta-symbol symbolising other sym-

bols
u, v m s−1 Three-dimensional and two-dimensional velocity vectors
u, v, w m s−1 Velocity vector components in x, y and z directions

ζ s−1 Vertical component of the vorticity vector = ω(3)

Table C.2.: List of mathematical and numerical operators, using χ as the meta-symbol.

Operator Description

dχ1

dχ2
Total derivative of χ1 with χ2

∂χ1

∂χ2
Partial derivative of χ1 with χ2

χt, χx, χy, χz, χp Partial derivatives of χ along the coordinate axes t, x, y, z and p

∇ Nabla-Operator

∇2 Laplacian operator

J(χ1, χ2) Jacobian of χ1 and χ2

∆χ A small variation of χ

χ(i) The i’th component of the vector χ

χi The discretised χ at the grid cell i in x-direction

χj The discretised χ at the grid cell j in y-direction

χk The discretised χ at the grid cell k in the vertical
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