ERDDAP ERDDAPY: Difference between revisions
No edit summary |
No edit summary |
||
Line 78: | Line 78: | ||
* access to the list of datasets by type (grid, tabular,..) | * access to the list of datasets by type (grid, tabular,..) | ||
== access to the list of all datasets available through this ERDDAP server == | === access to the list of all datasets available through this ERDDAP server === | ||
Here we use the '''get_search_url''' method | Here we use the '''get_search_url''' method | ||
Line 116: | Line 116: | ||
== access to the list of datasets by type (grid, tabular,..) == | === access to the list of datasets by type (grid, tabular,..) === | ||
Here we use the '''get_search_url''' method, we also specify the '''response''' and '''protocol''' attributes in our ERDDAP instance | Here we use the '''get_search_url''' method, we also specify the '''response''' and '''protocol''' attributes in our ERDDAP instance | ||
Line 251: | Line 251: | ||
|- | |- | ||
| 4 || NaN || https://erddap.icos-cp.eu/erddap/tabledap/icos... || icos26na20170511SocatEnhanced | | 4 || NaN || https://erddap.icos-cp.eu/erddap/tabledap/icos... || icos26na20170511SocatEnhanced | ||
|} | |||
=== How to get variable name given attribute value === | |||
erddapy comes with a method to select variables by theirs attributes values named '''get_var_by_attr''' | |||
# with the first result of the search | |||
e.dataset_id=df['Dataset ID'].values[1] | |||
# get variable by theirs attributes values | |||
variable_list = e.get_var_by_attr(standard_name="surface_air_pressure") | |||
variable_list | |||
<blockquote> | |||
['NCEP_SLP'] | |||
</blockquote> | |||
=== How to use Advanced search === | |||
Here again we use the '''get_search_url''' method | |||
; response : specifies the type of table data file that you want to download (default ''html''). | |||
; protocol : choose between ''tabledap'' or ''griddap''. | |||
; search_for : “Google-like” search of the datasets’ metadata. | |||
But we can also add, through a dictionary, other constraints on the search area, time span, and on one or several categories. | |||
# show datasets selected by advanced search | |||
e.constraints = { | |||
"standard_name": "surface_air_pressure", | |||
"max_lon": -69.0, | |||
"max_lat": 41.0, | |||
"min_time": "2016-07-10T00:00:00Z", | |||
"max_time": "2016-08-10T00:00:00Z" | |||
} | |||
url = e.get_search_url(response="html") | |||
<nowiki>print(f'{len(set(df["tabledap"].dropna()))} matching tabledap datasets') | |||
df[['griddap','tabledap','Dataset ID']].head()</nowiki> | |||
<blockquote> | |||
108 matching tabledap datasets | |||
{| class="wikitable" | |||
|- | |||
! !! griddap !! tabledap !! Dataset ID | |||
|- | |||
| 0 || NaN || https://erddap.icos-cp.eu/erddap/tabledap/allD... || allDatasets | |||
|- | |||
| 1 || NaN || https://erddap.icos-cp.eu/erddap/tabledap/icos... || icos26na20170409SocatEnhanced | |||
|- | |||
| 2 || NaN || https://erddap.icos-cp.eu/erddap/tabledap/icos... || icos26na20170421SocatEnhanced | |||
|- | |||
| 3 || NaN || https://erddap.icos-cp.eu/erddap/tabledap/icos... || icos26na20170430SocatEnhanced | |||
|- | |||
| 4 || NaN || https://erddap.icos-cp.eu/erddap/tabledap/icos... || icos26na20170511SocatEnhanced | |||
|} | |||
</blockquote> | |||
== How to download data == | |||
=== How to download data with OPeNDAP === | |||
e.dataset_id="icos26na20170409SocatEnhanced" | |||
e.constraints = None | |||
opendap_url = e.get_download_url(response="opendap",) | |||
print(opendap_url) | |||
<blockquote> | |||
https://erddap.icos-cp.eu/erddap/tabledap/icos26na20170409SocatEnhanced | |||
</blockquote> | |||
=== How to download data as netCDF4 === | |||
# with netCDF4 | |||
from netCDF4 import Dataset | |||
with Dataset(opendap_url) as nc: | |||
print(nc.summary) | |||
<blockquote> | |||
The Integrated Carbon Observation System, ICOS, is a European-wide greenhouse gas research infrastructure. ICOS produces standardised data on greenhouse gas concentrations in the atmosphere, as well as on carbon fluxes between the atmosphere, the earth and oceans. This information is being used by scientists as well as by decision makers in predicting and mitigating climate change. The high-quality and open ICOS data is based on the measurements from over 140 stations across 12 European countries. | |||
</blockquote> | |||
=== How to download data as Xarray === | |||
# with Xarray | |||
e.dataset_id="icos26na20170409SocatEnhanced" | |||
ds = e.to_xarray(decode_times=False) | |||
ds | |||
<blockquote> | |||
: <xarray.Dataset> | |||
: Dimensions: (row: 5416) | |||
: Coordinates: | |||
:: longitude (row) float32 -53.82 -53.84 -53.86 -53.88 ... 10.69 10.69 10.7 | |||
:: latitude (row) float32 66.85 66.83 66.81 66.79 ... 57.38 57.37 57.35 57.33 | |||
:: time (row) float64 1.492e+09 1.492e+09 ... 1.492e+09 1.492e+09 | |||
: Dimensions without coordinates: row | |||
: Data variables: | |||
:: Expocode (row) object '26NA20170409' '26NA20170409' ... '26NA20170409' | |||
:: pCO2 (row) float32 nan nan nan nan nan nan ... nan nan nan nan nan nan | |||
:: P_sal (row) object '' '' '' '' '' '' '' '' ... '' '' '' '' '' '' '' '' | |||
: Attributes: (12/71) | |||
:: acquisition_ended_at_time: 2017-04-16T10:01:19Z | |||
:: acquisition_started_at_time: 2017-04-09T02:58:53Z | |||
:: acquisition_station_class: 1 | |||
:: acquisition_station_comment: The cargo ship M/S Nuka Arctica ... | |||
:: acquisition_station_country_code: NO | |||
:: acquisition_station_id: 26NA | |||
:: ... ... | |||
:: subsetVariables: Expocode, depth2, version, SOCAT... | |||
:: summary: The Integrated Carbon Observatio... | |||
:: time_coverage_end: 2017-04-16T10:01:19.000Z | |||
:: time_coverage_start: 2017-04-09T02:58:53.000Z | |||
:: title: 26NA20170409_SOCAT_enhanced | |||
:: Westernmost_Easting: -54.042 | |||
</blockquote> | |||
=== How to download data as Pandas === | |||
Here we extract only several variables | |||
# with pandas | |||
e.dataset_id="icos26na20170409SocatEnhanced" | |||
e.constraints = None | |||
e.protocol = "tabledap" | |||
e.variables = ['time', 'Expocode', 'pCO2', 'P_sal'] | |||
df = e.to_pandas( | |||
index_col="time (UTC)", | |||
parse_dates=True, | |||
) | |||
df.head() | |||
{| class="wikitable" | |||
|- | |||
! time (UTC) !! Expocode !! pCO2 (ufffdatm) !! P_sal (psu) | |||
|- | |||
| 2017-04-09 02:58:53+00:00 || 26NA20170409 || NaN || NaN | |||
|- | |||
| 2017-04-09 03:03:22+00:00 || 26NA20170409 || NaN || NaN | |||
|- | |||
| 2017-04-09 03:08:14+00:00 || 26NA20170409 || NaN || NaN | |||
|- | |||
| 2017-04-09 03:12:42+00:00 || 26NA20170409 || NaN || NaN | |||
|- | |||
| 2017-04-09 03:17:10+00:00 || 26NA20170409 || NaN || NaN | |||
|} | |} |
Revision as of 14:53, 19 January 2022
How to use erddapy
First of all, we need to instantiate the ERDDAP URL constructor for a server.
- server
- an ERDDAP server URL or an acronym for one of the builtin servers.
from erddapy import ERDDAP import pandas as pd e = ERDDAP(server="https://erddap.bcdc.no/erddap")
To explore the methods and attributes available in the ERDDAP object
[method for method in dir(e) if not method.startswith("_")]
['auth', 'constraints', 'dataset_id', 'get_categorize_url', 'get_download_url', 'get_info_url', 'get_search_url', 'get_var_by_attr', 'protocol', 'relative_constraints', 'requests_kwargs', 'response', 'server', 'server_functions', 'to_iris', 'to_ncCF', 'to_pandas', 'to_xarray', 'variables']
Note: All the methods prefixed with get_ will return a valid ERDDAP URL for the requested response and options.
To get help on method
help(e.get_search_url)
- Help on method get_search_url in module erddapy.erddapy:
- get_search_url(response: Union[str, NoneType] = None, search_for: Union[str, NoneType] = None, protocol: Union[str, NoneType] = None, items_per_page: int = 1000, page: int = 1, **kwargs) -> str method of erddapy.erddapy.ERDDAP instance
- The search URL for the `server` endpoint provided.
- Args:
- search_for: "Google-like" search of the datasets' metadata.
- - Type the words you want to search for, with spaces between the words.
- ERDDAP will search for the words separately, not as a phrase.
- - To search for a phrase, put double quotes around the phrase (for example, `"wind speed"`).
- - To exclude datasets with a specific word, use `-excludedWord`.
- - To exclude datasets with a specific phrase, use `-"excluded phrase"`
- - Searches are not case-sensitive.
- - You can search for any part of a word. For example, searching for `spee` will find datasets with `speed` and datasets with `WindSpeed`
- - The last word in a phrase may be a partial word. For example, to find datasets from a specific website (usually the start of the datasetID), include (for example) `"datasetID=erd"` in your search.
- response: default is HTML.
- items_per_page: how many items per page in the return, default is 1000.
- page: which page to display, default is the first page (1).
- kwargs: extra search constraints based on metadata and/or coordinates ke/value.
- metadata: `cdm_data_type`, `institution`, `ioos_category`, `keywords`, `long_name`, `standard_name`, and `variableName`.
- coordinates: `minLon`, `maxLon`, `minLat`, `maxLat`, `minTime`, and `maxTime`.
- Returns:
- url: the search URL.
Then ERDDAP's users can:
- access to the list of all datasets available through this ERDDAP server
- access to the list of datasets by type (grid, tabular,..)
access to the list of all datasets available through this ERDDAP server
Here we use the get_search_url method
# show all datasets url = e.get_search_url() print(url)
we also specify the response attribute in our ERDDAP instance.
- response
- specifies the type of table data file that you want to download (default html). There are many response available, see the docs for griddap and tabledap respectively.
# show all datasets e.response='csv' url = e.get_search_url(search_for="all") df = pd.read_csv(url) df[['griddap','tabledap','Dataset ID']].head()
griddap | tabledap | Dataset ID | |
---|---|---|---|
0 | NaN | https://erddap.icos-cp.eu/erddap/tabledap/allD... | allDatasets |
1 | NaN | https://erddap.icos-cp.eu/erddap/tabledap/icos... | icos26na20170409SocatEnhanced |
2 | NaN | https://erddap.icos-cp.eu/erddap/tabledap/icos... | icos26na20170421SocatEnhanced |
3 | NaN | https://erddap.icos-cp.eu/erddap/tabledap/icos... | icos26na20170430SocatEnhanced |
4 | NaN | https://erddap.icos-cp.eu/erddap/tabledap/icos... | icos26na20170511SocatEnhanced |
access to the list of datasets by type (grid, tabular,..)
Here we use the get_search_url method, we also specify the response and protocol attributes in our ERDDAP instance
- response
- specifies the type of table data file that you want to download (default html).
- protocol
- choose between tabledap or griddap.
# show datasets by type e.response='csv' e.protocol='tabledap' url = e.get_search_url() df = pd.read_csv(url) df[['griddap','tabledap','Dataset ID']].head()
griddap | tabledap | Dataset ID | |
---|---|---|---|
0 | NaN | https://erddap.icos-cp.eu/erddap/tabledap/allD... | allDatasets |
1 | NaN | https://erddap.icos-cp.eu/erddap/tabledap/icos... | icos26na20170409SocatEnhanced |
2 | NaN | https://erddap.icos-cp.eu/erddap/tabledap/icos... | icos26na20170421SocatEnhanced |
3 | NaN | https://erddap.icos-cp.eu/erddap/tabledap/icos... | icos26na20170430SocatEnhanced |
4 | NaN | https://erddap.icos-cp.eu/erddap/tabledap/icos... | icos26na20170511SocatEnhanced |
But as user you probably don't want to use all datasets and you surely don't want to look in all of them to find which ones have the data you are interesting in.
How to search datasets
ERDDAP's users can select datasets:
- Full text search (Google-like search of the datasets' metadata)
- Category search
- Advanced search
How to use Full text search
Here we use the get_search_url method, we also specify the `response`, and `protocol` attributes in our ERDDAP instance.
- response
- specifies the type of table data file that you want to download (default html).
- protocol
- choose between tabledap or griddap.
- search_for
- “Google-like” search of the datasets’ metadata.
- Type the words you want to search for, with spaces between the words. ERDDAP will search for the words separately, not as a phrase.
- To search for a phrase, put double quotes around the phrase (for example, "wind speed").
- To exclude datasets with a specific word, use -excludedWord .
- To exclude datasets with a specific phrase, use -"excluded phrase" .
- Don't use AND between search terms. It is implied. The results will include only the datasets that have all of the specified words and phrases (and none of the excluded words and phrases) in the dataset's metadata (data about the dataset).
- Searches are not case-sensitive.
- To search for specific attribute values, use attName=attValue .
- To find just grid or just table datasets, include protocol=griddap or protocol=tabledap in your search.
- This ERDDAP is using searchEngine=original.
- In this ERDDAP, you can search for any part of a word. For example, searching for spee will find datasets with speed and datasets with WindSpeed.
- In this ERDDAP, the last word in a phrase may be a partial word. For example, to find datasets from a specific website (usually the start of the datasetID), include (for example) "datasetID=erd" in your search.
# show datasets selected by full text search e.response='csv' e.protocol='tabledap' url = e.get_search_url(search_for='fCO2') df = pd.read_csv(url) print(f'{len(set(df["tabledap"].dropna()))} matching tabledap datasets') df[['griddap','tabledap','Dataset ID']].head()
119 matching tabledap datasets
griddap | tabledap | Dataset ID | |
---|---|---|---|
0 | NaN | https://erddap.icos-cp.eu/erddap/tabledap/allD... | allDatasets |
1 | NaN | https://erddap.icos-cp.eu/erddap/tabledap/icos... | icos26na20170409SocatEnhanced |
2 | NaN | https://erddap.icos-cp.eu/erddap/tabledap/icos... | icos26na20170421SocatEnhanced |
3 | NaN | https://erddap.icos-cp.eu/erddap/tabledap/icos... | icos26na20170430SocatEnhanced |
4 | NaN | https://erddap.icos-cp.eu/erddap/tabledap/icos... | icos26na20170511SocatEnhanced |
How to get info on metadata
erddapy come with a method to explore dataset's metadata named get_info_url
# get metadata information e.response='csv' e.dataset_id=df['Dataset ID'].values[1] info_url = e.get_info_url() info = pd.read_csv(info_url) info.head(6)
Row Type | Variable Name | Attribute Name | Data Type | Value | |
---|---|---|---|---|---|
0 | attribute | NC_GLOBAL | acquisition_ended_at_time | String | 2017-04-16T14:21:09Z |
1 | attribute | NC_GLOBAL | acquisition_started_at_time | String | 2017-04-10T14:01:01Z |
2 | attribute | NC_GLOBAL | acquisition_station_class | String | 1 |
3 | attribute | NC_GLOBAL | acquisition_station_comment | String | The research vessel (R/V) G.O. Sars is own and... |
4 | attribute | NC_GLOBAL | acquisition_station_country_code | String | NO |
5 | attribute | NC_GLOBAL | acquisition_station_id | String | 58G2 |
How to use Category search
Here we use the get_categorize_url method
- categorize_by
- a valid attribute, e.g.: ioos_category or standard_name
- value
- an attribute value.x
# show datasets selected by category search e.response='csv' url = e.get_categorize_url(categorize_by='standard_name', value='surface_air_pressure') df = pd.read_csv(url) print(f'{len(set(df["tabledap"].dropna()))} matching tabledap datasets') df[['griddap','tabledap','Dataset ID']].head()
griddap | tabledap | Dataset ID | |
---|---|---|---|
0 | NaN | https://erddap.icos-cp.eu/erddap/tabledap/allD... | allDatasets |
1 | NaN | https://erddap.icos-cp.eu/erddap/tabledap/icos... | icos26na20170409SocatEnhanced |
2 | NaN | https://erddap.icos-cp.eu/erddap/tabledap/icos... | icos26na20170421SocatEnhanced |
3 | NaN | https://erddap.icos-cp.eu/erddap/tabledap/icos... | icos26na20170430SocatEnhanced |
4 | NaN | https://erddap.icos-cp.eu/erddap/tabledap/icos... | icos26na20170511SocatEnhanced |
How to get variable name given attribute value
erddapy comes with a method to select variables by theirs attributes values named get_var_by_attr
# with the first result of the search e.dataset_id=df['Dataset ID'].values[1] # get variable by theirs attributes values variable_list = e.get_var_by_attr(standard_name="surface_air_pressure") variable_list
['NCEP_SLP']
How to use Advanced search
Here again we use the get_search_url method
- response
- specifies the type of table data file that you want to download (default html).
- protocol
- choose between tabledap or griddap.
- search_for
- “Google-like” search of the datasets’ metadata.
But we can also add, through a dictionary, other constraints on the search area, time span, and on one or several categories.
# show datasets selected by advanced search e.constraints = { "standard_name": "surface_air_pressure", "max_lon": -69.0, "max_lat": 41.0, "min_time": "2016-07-10T00:00:00Z", "max_time": "2016-08-10T00:00:00Z" } url = e.get_search_url(response="html") print(f'{len(set(df["tabledap"].dropna()))} matching tabledap datasets') df[['griddap','tabledap','Dataset ID']].head()
108 matching tabledap datasets
griddap tabledap Dataset ID 0 NaN https://erddap.icos-cp.eu/erddap/tabledap/allD... allDatasets 1 NaN https://erddap.icos-cp.eu/erddap/tabledap/icos... icos26na20170409SocatEnhanced 2 NaN https://erddap.icos-cp.eu/erddap/tabledap/icos... icos26na20170421SocatEnhanced 3 NaN https://erddap.icos-cp.eu/erddap/tabledap/icos... icos26na20170430SocatEnhanced 4 NaN https://erddap.icos-cp.eu/erddap/tabledap/icos... icos26na20170511SocatEnhanced
How to download data
How to download data with OPeNDAP
e.dataset_id="icos26na20170409SocatEnhanced" e.constraints = None opendap_url = e.get_download_url(response="opendap",) print(opendap_url)
https://erddap.icos-cp.eu/erddap/tabledap/icos26na20170409SocatEnhanced
How to download data as netCDF4
# with netCDF4 from netCDF4 import Dataset with Dataset(opendap_url) as nc: print(nc.summary)
The Integrated Carbon Observation System, ICOS, is a European-wide greenhouse gas research infrastructure. ICOS produces standardised data on greenhouse gas concentrations in the atmosphere, as well as on carbon fluxes between the atmosphere, the earth and oceans. This information is being used by scientists as well as by decision makers in predicting and mitigating climate change. The high-quality and open ICOS data is based on the measurements from over 140 stations across 12 European countries.
How to download data as Xarray
# with Xarray e.dataset_id="icos26na20170409SocatEnhanced" ds = e.to_xarray(decode_times=False) ds
- <xarray.Dataset>
- Dimensions: (row: 5416)
- Coordinates:
- longitude (row) float32 -53.82 -53.84 -53.86 -53.88 ... 10.69 10.69 10.7
- latitude (row) float32 66.85 66.83 66.81 66.79 ... 57.38 57.37 57.35 57.33
- time (row) float64 1.492e+09 1.492e+09 ... 1.492e+09 1.492e+09
- Dimensions without coordinates: row
- Data variables:
- Expocode (row) object '26NA20170409' '26NA20170409' ... '26NA20170409'
- pCO2 (row) float32 nan nan nan nan nan nan ... nan nan nan nan nan nan
- P_sal (row) object ...
- Attributes: (12/71)
- acquisition_ended_at_time: 2017-04-16T10:01:19Z
- acquisition_started_at_time: 2017-04-09T02:58:53Z
- acquisition_station_class: 1
- acquisition_station_comment: The cargo ship M/S Nuka Arctica ...
- acquisition_station_country_code: NO
- acquisition_station_id: 26NA
- ... ...
- subsetVariables: Expocode, depth2, version, SOCAT...
- summary: The Integrated Carbon Observatio...
- time_coverage_end: 2017-04-16T10:01:19.000Z
- time_coverage_start: 2017-04-09T02:58:53.000Z
- title: 26NA20170409_SOCAT_enhanced
- Westernmost_Easting: -54.042
How to download data as Pandas
Here we extract only several variables
# with pandas e.dataset_id="icos26na20170409SocatEnhanced" e.constraints = None e.protocol = "tabledap" e.variables = ['time', 'Expocode', 'pCO2', 'P_sal'] df = e.to_pandas( index_col="time (UTC)", parse_dates=True, ) df.head()
time (UTC) | Expocode | pCO2 (ufffdatm) | P_sal (psu) |
---|---|---|---|
2017-04-09 02:58:53+00:00 | 26NA20170409 | NaN | NaN |
2017-04-09 03:03:22+00:00 | 26NA20170409 | NaN | NaN |
2017-04-09 03:08:14+00:00 | 26NA20170409 | NaN | NaN |
2017-04-09 03:12:42+00:00 | 26NA20170409 | NaN | NaN |
2017-04-09 03:17:10+00:00 | 26NA20170409 | NaN | NaN |