ITAS Automatic Weather Stations
GFI has a set of 6 automatic weather stations composed of robust standard instrumentation. Measured parameters include pressure, air temperature, relative humidity, wind speed and direction, precipitation and global radiation.
In detail, the AWS includes the following instruments:
Instrument name | Function |
---|---|
Campbell Scientific | CR1000 datalogger |
RM Young 61302V | trykksensor |
S+S Regeltechnik HTF 100 Pt100 | temperatursensor |
Vaisala HMP155 | temperatur- og fuktighetssensor |
RM Young 5106-45 Alpine | vindhastighets- og vindretningssensor |
Pessl IM523 | nedbørssensor |
Apogee SP110 | strålingssensor |
The weather station configuration is fully documented in the attached manual:
File:ITAS_GFI_Manual_20160518.pdf (in Norwegian)
The weather stations are configured to acquire 10 min measurements, and transfer the logger files to GFI via mobile network once per day at 11:00 UTC.
Routines are available at GFI to convert from the ASCII format files to netCDF files will full metadata information.
Matlab routines
% read_AWS.m %-------------------------------- % Description % read AWS data % station: Station serial number, e.g. 1432 % startdate: datenum of first day % enddate: optional: datenum of last day %-------------------------------- % HS, Thu Feb 28 16:30:27 CET 2019 %-------------------------------- function data=read_AWS(station,startdate,varargin) if nargin==2, enddate=startdate; elseif nargin==3, enddate=varargin{1}; else error('Wrong number of arguments in read_AWS.m'); end for dat=startdate:enddate, % open file and read variables fname=sprintf('AWS_%4d/CR1000_%4d_Minutt_%s.nc',station,station,datestr(dat,'yyyymmdd')); ncid=netcdf.open(fname,'NOWRITE'); % check that file exists if ncid<0, error('File %s not found.',fname); end % get all variable IDs varids=netcdf.inqVarIDs(ncid); % loop through all variables for i=varids, [varname,xtype,dimids,natts] = netcdf.inqVar(ncid,i); if dat==startdate, data.(varname)=netcdf.getVar(ncid,i,'double'); else data.(varname)=[data.(varname); netcdf.getVar(ncid,i,'double')]; end end netcdf.close(ncid); end % set missing data if T<-98 midx=find(data.T<-98); fnames=fields(data); for f=1:length(fnames), data.(fnames{f})(midx)=NaN; end end % fin